
7RD-A199 265 CONFORML( GEOMETRY NOTINE'S 
CONJECTURE AND DIFFERENTIAL 

1/2
GEODESY. U) NEW MEXICO STATE UNIV LAS CRUCES DEPT OF
MATHEMATICAL SCIENCE. J D ZUND ET AL. 2? JUL 87

UNCLASSIFIED SCIENTIFIC-i FL-TR-7-6233 F/G /5 MLmh1h9hhhhhhhEhhlC~



L6~

rI HN HARI

% -p

%~

%~.

% % %0
e",V



-'.-. ".'-" -.... * .

011C FILE COi /

AFGL-TR-87-02 33

*

Conformal Geometry, Hotine's Conjecture,

and Differential Geodesy

Joseph D. Zune " % '. "

Wayne A. Moore '

New Mexico State University.-

Department of Mathematical Sciences 0
Las Cruces, NM 88003 . *. . i

. .,, .-. . .

NOV 2 4 1987

2 7 J u ly 19 8 7 , , .

Scientific Report No. 1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE GEOPHYSICS LABORATORY -

AIR FORCE SYSTEMS COMMAND
UrNITED STATES AIR FORCE
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731 -"

Qi - .. -

- - - - - - ~ -~ . -.-. ~' &~ I ~ 4 .. -I



This technical report has been reviewed and is approved for publication.

,,,. . . ,,',,

"S

CHRIST6 PHER THOMAS P . R OO -NY , C h ef " . .DONALD. H.1AeThis report has been reviewed an ia o frai pBaio n
.. •-y ..--

,,.. , .-

DONAD H ECHARTOMASrP.tor NEY, Ch ef

Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical
Information Center. All others should apply to the National TechnicalInformation Service.""" "

If your address has changed, or if you wish to be removed from the mailing .- "'-
list, or if the addressee is no longer employed by your organization, please.-.•..,
notify AFGL/DAA, Hanscom AFB, MA 01731-5000. This will assist us in main- ''-" -
taining a current mailing list. S "~

Do not return copies of this report unless contractual obligations or notices...--'-"
on a specific document requires that it he returned. ,'-'-''

,. -. 4. .

S-° •.



Unr I stg f I pr
SEUITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS %blI

Unclassified______________________
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION, AVAILABILITY OF REPORT

2b DECLASSIFICATION/ DOWNGRADING SCHEDULE Apoe o ulcrlae
Dis tribut ion unlimited P?'

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

AFGL-TR-87 -0233 V .

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

New Mexico State University (if applicable) Air Force Geophysics Laboratory

6c. ADDRE SS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code) .W~-
Dept of Mathematical SciencesHncoAF

Massachusetts 01731Las Cruces, NM 88003 %
___ __ ___ __ _ _ __ __ ___ __ ___ __ ___ __ __ ___ __ ___ __ __a '.

Ba NAME OF FUNDING /SPONSORING I8b OFFICE SYMBOL 9 PROCUREMINT INSTRUMENT IDENTIFICATION NUJMBR
ORGANIZATION (if applicable)

j_____________ F19628-86-K-0028
8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT %
ELEMENT NO NO NO ACCESSION NO
61102F 12309 G1 BQ

11 TITLE (Include Security Classification) -4

Conformal Geometry, Hotine's Conjecture, and Differential Geodesy

lJoseA une, Wayne A. Moore

1 3a TYPE OF REPORT 13Tb TIME COVERED 0 141DATE OF REPORT (Year, Month. Day) 15 PAGE CO UNT
ScienifM _____IFROMTO ___ 1987 July 27 128 -

16 SUPPLEMENTARY NOTATION

. %

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) f.tI
FIELD GROUP SUB-GROUP Differential Geodesy; Conformal Geometry, Hotine's Conjecture;

Introduction (which serves as a guide to the dissertation) and a Supplement describing
details of our recent resolution of Hotine's Conjecture,- In effect, it~is a more-
comprehensive version of a papier of ours which will appear this year in Bulletin
Ge'odedsigue. It includes a detailed development of conformal geometry which is more
complIete than that given in Chapter 10 Of Hotine's Mathematical Geodesy (1969), and
numerous technical aspects of Hotine's work on his conjecture which were omitted in
our paper. It is hoped that this report will be helpful to mathematical geodesists
who wish to further explore the contributions of Hotine and Marussi to differential
ge, desy.

20 DISTRIBUTION AVAILABILiTv OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION ~
fl/Nc. ASSIFFD//JNLMITFD El SAME AS RPF [ DTIC I)SERS Unclassified

,?2a NAME OF RESPONSIBLE INDIVIDUAL 22b TFLEPHONE (include Area Code) 22( OFFICE SyMiII/
Christopher Jekeli (67 7-52SS9GI

DD FORM 147 3. 84 MAR 83 APR ed~tor may be ~Secd I elrate SECU/RITYCLASSIFICATION ( 'v PAGi
All other edno, je oboete Ucasfe

Unclassified .

Y'~~4'.Z-'' %K'J.. "-K .*i** ... ,*".* *- -. *..** 1.



I

CONTENTS

INTRODUCTION (by J.D. ZUND) ................................... i h

CONFORMAL GEOMETRY AND DIFFERENTIAL GEODESY

(By W. MOORE)

Chapter I - Introduction

§ 1. Geodesy and Mathematics ............................ 3

§ 2. Hotine, Marussi, and Three-Dimensional Geodesy ..... 6

§ 3. Notes on This Dissertation ......................... 9

Chapter II - Conformal Geometry

§ 1. Introduction and Basic Notation ..................... 10 .?

S2. The Modern Formulation ............................. 1i0

§ 3. The Classical Formulation .......................... 16 7

S 4. Special Values of "N" ............................. 25

§ 5. Integrability Conditions ........................... 30

Chapter III - Triply Orthogonal Systems

S 1. Triply Orthogonal Systems of Surfaces .............. 39

§ 2. The Cayley-Darboux Equation ........................ 44

§ 3. The Theorem of Liouville ........................... 48

Chapter IV - Differential Geodesy

S 1. Introduction...................................... 54. 6

2. Conformal Mapping and Isometric Immersion .......... 54

§ 3. Ricci Rotation Coefficients ........................ 58

S 4. Other Criteria for Conformal Flatness .............. 61

5. Normal, Geodesic, and Canonical Congruences ........ 67

p -



S 6. A Rotation Coefficient Formulation of the
Cayley-Darboux Equation ............................ 75

S 7. Hotine's Conjecture ................................ 76

§ 8. Conformal Mapping and the Cayley-Darboux Equation 82

§ 9. Conditions that a Normal Congruence Map to
a Geodesic Normal Congruence ....................... 83

§10. Conformal Mapping of Two-Dimensional Spaces ........ 87

§11. Critique of Hotine's Conjecture .................... 90

Bibliography ............................................. 101

Appendix - An Example of Canonical Congruences ........... 105

SUPPLMENT (by J.D. ZUND)

Sl Introduction .............................................. 109

§2 Hotine's Cayley-Darboux Equation .......................... 109

§3 The Cayley-Darboux Equation .............................. 114

§4 Physical Consequences ..................................... 115

' ,-n :,,! y 0I -'

U R. : f :: "A )i .4L..

. .... ", "Av ,, " , .... , ,

iv
r. '. WT

4*. . "j



INTRODUCTION (by J.D. ZUND)

The major part of this research report is essentially the Ph.D. 46

dissertation of Wayne Moore, "Conformal Geometry and Differential Geodesy," %.e

which was written under my direction at New Mexico State University with the

support of the Air Force Geophysics Laboratory. This dissertation is

reproduced in its original form, apart from the correction of minor

tyrwgraphical errors. This report is prepared in the hope that it will be

useful to mathematical geodesists who are interested in further exploring the ,

fascinating ideas of Martin Hotine. In addition to the dissertation, I have ,

prepared a supplement which describes joint work of Dr. Moore and myself which

was done after completion of the dissertation. The contents of the

dissertation and supplement definitely settle Hotine's 
conjecture on the use %

of triply-orthogonal systems of surfaces as a natural coordinate system in

differential geodesy. Hotine made his conjecture in 1966, and it is included -.

in his treatise, HOTINE [1969 1 , but was unresolved until our investigation.

We show that this conjecture is false, however, we believe that this negative

result in no way impairs either Hotine's approach or the importance of his .

conception of a unified approach to three-dimensional geodesy using the ..

notions of tensor analysis 
and differential geometry. %" %- '

The following discussion gives a guide and commentary to the contents of

this research report. 

- -
."-. %,

The dissertation consists of four chapters, a bibliography, and an

appendix. Chapter I -- Introduction -- contains some preliminary comments on

geodesy intended for mathematicians and physicists. It is not comprehensive,

but is merely intended to indicate the close relationship which existed

between geodesy and mathematics and physics before the twentieth century. In

iIn this report, the cited references are those given in the dissertation.
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effect, it sets the stage for the topic to be investigated in the

dissertation. The chapter concludes with biographical material on Antonio

Marussi and Martin Hotine, and their proposal to create a three-dimensional

geodesy in the discipline which we call differential geodesy.

Chapter II -- Conformal Geometry -- is a self-contained introduction and

systematic exposition of conformal geometry, i.e., the geometry of a pair of

N-dimensional Riemannian spaces V and V which are related by a conformalVN N

transformation. It presumes a prior acquaintance with tensor analysis, and

can be regarded as supplement to the discussion in HOTINE (1969] (Chapter 10,

pages 55-62) and EISENHART (1949] (Chapter II, pages 89-95). The latter is

the standard reference in English on the topic, however, it is very incomplete

and really merely a partial summary of known results. Chapter II begins with

a brief excursion into the modern formulation of conformal geometry in Section

2. This is admittedly somewhat abstract, however, it is necessary to make IF

precise the notion of a conformal transformation, i.e., mapping, between VN

and VN. This notion, and what is meant by adopting the same local coordinate

system on both vN and VN, is obscurely done in the classical literature,

e.g., EISENHART [1949]. Sections §3-5 then contain a systematic development

of :onformal geometry using the classical formulation with particular

attention being given to the dimensions N = 2 and N = 3 which are of

primary importance in non-relativistic differential geodesy. The most

interesting mathematical aspects of conformal geometry occur when N > 4, and

the cases N = 2 and N = 3 are often inadequately treated in the

literature. Section h3 introduces the basic ideas, concepts, and

tensor-theoretic quantities encountered in conformal geometry, and Section §4

discusses their behavior when N =2 and N = 3. Section §5 considers

integrability conditions and conformally flat spaces. The presentation of

this material in the usual references, i.e., EISENHART (1949] and SCHOUTEN

[1954J, is wholly inadequate and riddled with errors. Moreover, the original

vi



material is also confusing. The key results, which are the "X-Representation"

of the curvature tensor (see pages 29-30) and Schouten's lemma (see Theorem

5.3, on page 33), were originally done in Schouten's symbolic notation which

was not widely understood and which Schouten himself later abandoned. The IAN'

material is quite subtle and intricate, and I regard Section 55 as being the

clearest and best treatment of the subject which I have seen. The topic of

conformally flat spaces is likely to be of considerable importance in future

work in differential geodesy. Both HOTINE (1966a, 1966b] and MARUSSI (19851

(see pages 169-176) suggested that such spaces are important in studying the

propagation of light in continuous isotropic refracting media. Virtually

everything in Chapter II is necessary to understand the conceptual setting for

resolving Hotine's Conjecture. %

Chapter III -- Triply Orthogonal Systems -- is devoted to introducing the

basic notions occurring in Hotine's Conjecture. Section §1 reviews the theory

of triply orthogonal systems of surfaces and presents some elementary examples

of such systems. It also includes the Dupin Theorem (Theorem 1.1, pages

39-41) and the Generalized Dupin Theorem (Theorem 1.2, pages 41-42). The

former is proven in Section §1, however, the latter is more complicated, and

its proof is deferred until Chapter IV. Section 52 is devoted to giving a

tensor-theoretic derivation of the Cayley-Darboux equation and explicitly

exhibits the general form of this equation. The material in this section has

been accepted for publication, see ZUND/MOORE [1986], and will appear in the -

near future. It turns out that the Cayley-Darboux equation is the critical

result in refuting Hotine's Conjecture. As will be shown in the supplement,

Hotine's version of this equation is wrong, and this led him into believing

that this equation was always identically satisfied in a flat three-

dimensional Euclidean space E3. Section l13 contains a statement and proof of

vii
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Liouville's Theorem (Theorem 3.1, pages 46-51). This important result is V

discussed (without attaching Liouville's name to it) in HOTINE (1969] (see V

page 56 and his footnote, and also in HOTINE [1966a, 1966b]). The theorem is

rather deep and delineates the possible types of conformal transformations

between N-dimensional Euclidean spaces EN and EN. Despite its importance,

this result is rarely proven in the literature, and Section §3 concludes with

a self-contained proof which is based on that given in BIANCHI [1910]. A

general N-dimensional argument is given in DUBROVIN/FOMENKO/NOVIKOV [1984], <€

but it is incomplete and is not changed in the second, 1986, Russian edition

of this book.

Chapter IV -- Differential Geodesy -- presents the analytical apparatus

for analyzing the Hotine Conjecture and the flaws in his alleged proof. After

formally stating his conjecture in Section 1 and why he hoped it would be

true, in Section S2 the question of isometric immersion of a surface V2  in a

V3  is discussed together with the behavior of V2  under a conformal

mapping. Section §3 introduces the formalism of Ricci rotation coefficients

and indicates how they are affected by a conformal mapping of V3  into V3.
3 '.I 3*"

Although in HOTINE [19691 this kind of reference system -- it is convenient to

call it a t,'nd -- was implicitly employed, this important topic was not

explicitly utilized. This was a serious omission in Hotine's analysis, since,

as we will show in the supplement, it will allow us to conclusively

demonstrate that his Cayley-Darboux equation is wrong and not an identity! We

believe that this triad formalism is particularly suited to the requirements
V..

of differential geodesy and will prove to be an important part of future

developments in mathematical geodesy. Section 4 uses this formalism to

concisely establish two important criteria: the Schouten-Eisenhart Theorem

(Theorem 4.1, pages 59-61) and the Ricci-Finzi Theorem (Theorem 4.2, pages

61-63), for the conformal flatness of a V Theorem 4.3, (pages 63-64)

. ' .
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furnishes a new Schouten-Eisenhartlike criterion for a V3. A more abstract

version of the results of Section §4 has been submitted to Tensor N.S. for

publication. The properties of congruences of curves being normal, geodesic,

and canonical are studied in Section §5 using rotation coefficients and a"p

proof of the Generalized Dupin Theorem is given (pages 70-71). This new proof
• p. .- -'

has been accepted for publication, see MOORE/ZUND (19861. An example of how

to find a canonical congruence is presented in the Appendix (pages 101-103).

Section §6 contains a rotation coefficient formulation of the Cayley-Darboux

equation. Section §7 now begins our analysis of Hotine's Conjecture by

outlining the steps of his argument. Section §8 shows by using Theorem 8.1

(page 81) that part of Hotine's proof is false. Section §9 examines when the

conformal image of a normal congruence of curves can be a geodesic normal

congruence and suggests that another step of Hotine's argument is shaky.
Section §10 briefly considers the question of a conformal mapping between a

pair of surfaces V2  and V2 , and shows that a formula for the conformal
22 %N-

image of the geodesic curvature given in MARUSSI [1985) (see his page 150) is

incorrect. Finally, in Section §11 our results are applied to give a critique

of Hotine's argument. It is shown that further flaws occur in his procedure:

he specialized the conformal function defining his mapping and made essential

use of coordinates/equations which are valid only at a point of a V2 . The

effect of either of these mistakes is to demand that his (curved) surfaces '. [

degenerate into (flat) planes. None of these steps can be easily rectified,

and when, taken together, they strongly suggest that Hotine's argument is

fatally flawed, and that his conjecture is false. .

The Supplement (written by J.D. Zund) now furnishes the conclusive -
reasons why Hotine's conjecture is false. It is intended as a companion to

our joint paper, "Hotine's Conjecture in Differential Geodesy," which will be

published in Bulletin G.od.sique. In this supplement we not only extend the

ix ~. A .~.



material in Dr. Moore's dissertation, but provide the details of our

refutation of the Hotine Conjecture which had to be omitted in our paper.

After some introductory comments in Section §1, we translate Hotine's

Cayley-Darboux equation into the rotation coefficient formalism and prove that

it is not equivalent to the true Cayley-Darboux equation in Section §2. This

shows that the Cayley-Darboux equation is not an identity as Hotine claimed,

and hence his conjecture cannot be true. Finally, in Section 53 we discuss

the physical consequences of this result, and what they mean for differential

geodesy.

In conclusion, Dr. Moore and I would like to express our gratitude to the

Air Force Geophysics Laboratory and in particular to Dr. Jekeli for his

invitation to prepare this research report. The cooperation and support of

this research under contract F 19628-86-K-0028 "Conformal and Non-Conformal

Transformations in Differential Geodesy" is gratefully acknowledged.

Joseph D. Zund -.Principal Investigator and

Professor of Mathematics
New Mexico State University
Las Cruces, New Mexico
July 1987
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INTRODUCT ION

hl. GEODESY AND MATHEMATICS

Theoretical geodesy is the study of the size and shape of the

Earth. This is not geographic shape, but rather the shape of the

surface of mean sea level and its continuation under the earth's

crust. This surface of mean sea level is called a geoid and by

definition it is an equipotential surface of the earth's % .

%gravitational field.

The history of geodesy may be divided into three eras: the %

spherical era, the spheroidal era, and the geoidal era. The

spherical era dates from the time of the Greeks to approximately

1670. The spheroidal era stretches from 1670 to approximately 1830.

The geoidal era spans from 1830 to the present. An eminent

mathematician was pivotal in the transition between each of these %

eras.

Pythagoras is normally credited as being first to conceive of

the earth as spherical. He reasoned that since the sun and moon are

spherical, then the earth must have a similar shape. Aristotle made

what was probably the first scientific estimate of the size of the

earth. However, since we have no idea of the size of his unit of

length (the stadium) it is impossible to estimate the accuracy of his

work. In the third century B.C., Erastosthenes, considered one of

the founders of geodesy, devised the idea of measuring the size of

the great circle arc between the North and South poles. His



technique was based on measuring the difference in the angle of the

sun's rays at Alexandria and Syrene (now Aswan), which he assumed to

be on the same longitude. Although Erastosthenes' estimate is 15%

too large when compared with modern estimates, his idea is very

modern in spirit and the error is due to the crudeness of his A

measurements. In the first century B.C., Posidonius made another

estimate of the size of the earth based on the difference in the

angle the star Canopus made with the horizon at Alexandria and

Rhodes. His estimate was also 11% too large.

After Posidonius interest in geodesy lapsed for some 1500 years

when it was rekindled by the need for accurate maps and the

exploration of the New World. In 1617, Snell used triangulation as a

method to determine distances. This was a breakthrough since this

method was much more accurate than direct measurement. In 1669,

Picard used a telescope to determine latitude as well as in

triangulation. Picard's work is extremely important since Newton

used his estimate of length of the arc of a degree of latitude to

show that gravity extends beyond the surface of the earth and

determines the motion of the moon. This estimate of the length of a

degree of latitude ultimately became the basis of the metric system.

The period between Erastosthenes and Picard is the spherical era
of geodesy. The work of Isaac Newton inaugurates the spheroidal era.

Newton's discoveries in mechanics, i.e., laws of motion, and the

formulation of the law of gravitational attraction, are crucial steps

in determining the shape of the earth. Newton used a theoretical

argument based on the hydrostatic equilibrium of the oceans to show

4
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that the earth was an oblate sphere with the major axis 1/230 longer

than the minor axis. The modern value for this eccentricity is

approximately 1/290. After Newton published this estimate, many N.,

people were anxious to confirm or refute it. It was reasoned that if

the earth were flattened at the poles, a degree of latitude would be

shorter near the poles than at the equator. The Cassinis, a family

of astronomers, using estimates for a degree of latitude in the north

and the south of France, determined that the earth was a prolate

sphere and not an oblate sphere. This announcement naturally aroused

a good deal of controversy, and in the 1730's the French Academy of

Sciences sent two expeditions -- one to Lapland and one to Peru -- to

settle the matter. Their measurements showed that the earth was

indeed oblate with eccentricity 1/178. It is interesting that

Newton, sitting in his room in Cambridge, could produce a better

estimate than the French Academy could with two expeditions. .

with the initiation of mechanics and gravitation by Newton other

mathematicians were fast to extend his studies. Euler developed the

mechanics of rigid bodies, Lagrange analytical mechanics, Legendre /
potential theory, Laplace the mechanics of rotating fluid masses. A

powerful mathematician, Clairaut, computed the variation of gravity

with latitude. Daniel Bernoulli and Laplace studied tides and

methods to predict them. This research was not "pure" research,

which was then applied to physical problems, but mathematics that was

developed to understand physical and geodetic phenomena.

As Newton opened the spheroidal era, it was Gauss (at least in

spirit) who started the geoidal era. Gauss became geodetic

5I
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consultant for the Prussian army in 1799 and in 1820 was involved in

field work where he developed new instruments for surveying. He

adapted his method of least squares to geodetic measurements and

developed the Gaussian probability distribution to smooth

observational errors. Using data from geodetic measurements, he was .,;.,;

led to develop his theory of curved surfaces. Gauss's intrinsic

geometry of surfaces eventually led Riemann to the general theory of

intrinsic geometry.

Mathematicians and physicists who followed Gauss developed and

extended his work. Green further developed potential theory (he

coined the term). Stokes calculated the undulations of the geoid

from the theoretical ellipsoid (Stokes Theorem). Rayleigh and

Poincare extensively studied tides.

Starting around 1900 the close connection between geodesy and

mathematics begins to diminish. This was caused by exciting new

problems in mathematics causing it to become divorced from physics.

Moreover, physics was evolving into modern physics and leaving behind ..

classical physics with which goedesy was primarily concerned.

Moreover, with the development of accurate instrumentation geodesy

became less concerned with mathematical methods and theoretical

physics.

2. HOTINE, MARUSSI AND THREE-DIMENSIONAL GEODESY

The technical achievements of the 1950's made it possible for

geodesy to at last leave the surface of the earth. High flying

aircraft and satellites could measure gravity high above the earth

.1e W

6I
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and submarines could measure it deep below the sea. The geodetic

coimmunity was slow to take advantage of these new technologies as %

MARUSSI[1985], p. 6, notes:

The third dimension thus appears, in practical Geodesy, as
an intruder in the flourishing paradise of the Geodesist, which
comprises the surfaces of the ellipsoid and the geoid; and when
this intruder comes to claim his proper rights, no efforts are
spared to get rid of him as quickly as possible, and with the
least trouble, by means of a weighty battery of corrections and
reductions, which for two centuries has figured in every
treatise on Geodesy.

% %.I- .

The first two advocates of three-dimensional geodesy were

Antonio Marussi and Martin Hotine. Their advocacy was for a point of

view -- that geodesy is inherently three-dimensional. Both men began

to apply and develop mathematics so that this viewpoint could be

practically put to use. S

Antonio Marussi was born in Trieste, Italy in 1908. He received

a Ph.D. degree in mathematics at the University of Bologna and then % I

joined the Istituto Geografico Militare (Italian geodetic and mapping S

agency) in Florence. During his twenty years with them he modernized

geodetic procedures, adopted international standards, and streamlined

computing schemes. In 1952, he accepted a professorship at the •

University of Trieste.

Marussi introduced advanced mathematical tools such as tensor

analysis to geodesy. He also recognized the practical aspects of

geodesy by doing field work in numerous countries. He died in 1984. .

Martin Hotine was a career military officer and rose to the rank ." °,

of Brigadier. He attended the Royal Military Academy at Woolwich, 6

7
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England and was commissioned into the Royal Engineers in 1917.

During his career in the British Army he pioneered practical methods

of topographic mapping using aerial photography, did geodetic -

surveying in East Africa, served with the British Ordinance Survey,

and during the Second world War he served as Deputy Director of

Survey in the British Expeditionary Force. Hotine earned a degree in

engineering from Magdalene College, Cambridge, during his time in the

service.

Hotine retired from the military in 1946 and became the first

director of the Directorate of Overseas Surveys where he served until ".

1963. He then jointed the U.S. Coast and Geodetic Survey. When the

Environmental Sciences Services Administration was formed, he became

a research staff member of this agency's laboratory at Boulder,

Colorado. It was during this time that he wrote HOTINE(1969] and

pioneered the systematic use of tensor techniques in geodesy. Hotine ".4.

died in 1968.
Hotine and Marussi came to geodesy from vastly different

directions. Both men achieved distinction in theoretical and

practical geodesy and came to similar conclusions concerning . .
"

theoretical work. Their viewpoint is summed up by MARUSSI(19851:

In effect, what we know today of the earth's gravity field
owes very much more to work done at the desk, with pencil and
paper, than to observations made with instruments in nature,
(p. 5). . w

: ". % '
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§3. NOTES ON THIS DISSERTATION
• Martin .

In this dissertation we have examined a conjecture by Martin

Hotine on triply orthogonal coordinate systems. In Chapter II, we

introduce notation and develop machinery for conformal geometry. In

Chapter III, triply orthogonal coordinate systems are discussed.

Chapter IV then deals with Hotine's conjecture.

We have employed a somewhat unusual method of listing items in .'d

the bibliography. This method is based on that employed by J.A. 4%)
,J. ,

Schouten in his book SCHOUTEN(1954], which is probably the most

comprehensive book on tensor analysis. Items in the bibliography are

listed by author's name and listed chronologically. References to

specific items are indicated by the author's name in capital letters

with the date displayed in brackets. In case of several items in a -

given year, the dates have lower case Latin indices attached.

General references to an author are given by citing the author's name

without complete capitalization. We are grateful to Mary Eberhardt

of the Graduate School for her understanding and advice on how best

to use Schouten's system in our bibliography.

We have used the Einstein summation convention on repeated

indices. When we do not want to sum on repeated indices the letters •

"NS" for "no sum" will be written by the equation. %

9
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CHAPTER II

CONFORMAL GEOMETRY

hl. INTRODUCTION AND BASIC NOTATION

The purpose of this Chapter is three-fold:

(i) to introduce the notation and conventions to be employed,

4 (ii) to relate the classical and modern terminology,

(iii) to provide proofs of some "well known" classical results

which are not easily accessible.

Our notation is essentially that of EISENHART[1949], with slight

modifications. However, our presentation is considerably more

detailed. Let VN denote an N-dimensional Riemannian manifold.

Initially we assume that N > 3 and the metric tensor is positive

definite. The cases N = 2 and N = 3 will be dicussed separately.

The symbolism ":=" and "-" will denote "equal by definition" and

"identity", respectively. Free indices will be h, i, j, k, P, m, n

and summed indices (used for emphasis when only some indices are

summed) will be p, q, r, s, t In the case N - 2 or 3 no

special indices will be used. Later, special conventions will be

made, e.g., when N = 2 Greek indices will be used. -

Section 2 uses its own notation, which will be introduced there.

Additional notation will be given where appropriate. .

2. THE MODERN FORMULATION

Definition (2.1). Let M and M be smooth N-dimensional

Riemannian manifolds (all manifolds are assumed connected and of

10
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class Cm). The Riemannian manifolds M and M are locally <

conformal, whenever, e

(i) for every p C M and p E M there exists a neighborhood

of p : U C M and a neighborhood of p: U C M, and a

map f U - U f(U) =U such that f is a

diffeomorphism with f(p) = p ;

(ii) there exists a C function N U [R such that for

any pair of tangent vectors X and Yp in the tangent %

space of M at p , T (M) , that satisfies
p

(a) A > 0 on U,

(b) for the inner products < >M and < , >^ in theMM ".

respective tangent spaces T (M) and T(M) ,
PP p

one has

(2.1) <f*Xfy<X pp,)<X Y p>

where f, T (M) - TI(M) is the derivative (or Jacobian) map of

p

f . The map f is a local conformal map, and the function N is 1,

called the conformal factor. -

The derivative map, f* , is defined by -

)g :_ (gof) ,
p

where g C "(M,[R) .

The local charts (U,h} and {U,h] of M and M ,

respectively, are related by the commutative diagram

.-4...



If

UCM f UCM

6 (2.2) -
h := hof

IN

and the local coordinate systems {xi }  and xi ( i 1..., N)
.4W

of h(p) and h(p) in U and U , respectively, are related by the

I conmmutative diagram

U U

I (2.3) h h

" IN f IN "€ ._

i.e., x f(x ) , where f is the identity map. This fact,

although obvious from (2.2) and (2.3), is often obscured in the

classical literature. This is the meaning of the expression

"imposing the same coordinates on both manifolds". See HOTINE[1969],

p. 55. %.

To exhibit the familiar tensor expressions for (2.1), we take a

natural coordinate basis e. in T (M) , and denote the map

*:p -. R by Alp) - e2 7 where 0 = c(x ) The derivative mapping

acts on the basis vectors e. according to

d 0 0(2.4) f*le = f*,,-'' := t.x =e,-----'" ...,-
Ox Ix Ix' -,..I P

Then since

(2.5) <e ,e > g(e ,e =
" .', - .ik

12H



and

(2.5a) <ei'ek> :=g(ei'ek-gi' /"%

(2.1) becomes

2.,(2.6) g ik e i

The tensors g and g with components gik and gik respectively,

are the metric tensors of M and M , respectively. This is the .

usual tensor expression defining a locall conforma1 map between M

and M (EISENHART(1949]). Classically, e.g., in DUBROVIN/FOMENKO/ 0 W

NOVIKOV[1984], one often encoun ers the expression

(2.7) gO I =g x

which reduces to (2.6) by virtue of our definition of the map f, in

(2.4).

Actually (2.6) is improperly written since it relates components

of tensors defined in the tensor products of different cotangent

spaces. The correct expression requires introducing the pullback (or

restriction) mapping of the cotangent spaces, i.e., r

*J

f T (M) ... 0 TI(M) T (M) 0 ... 0 T (M)
p p p P

defined by

(f a)(p)(v I  ... v alf(P))(f*(v f,(v

13
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0 %

where a is a covariant tensor of order k and v. E T (M) , and

requires writing

*~2a(2.8) fg=e g,

or classically, A-

*%
(2.9) f gij =e gik

However, the use of (2.6) is so pervasive in the literature that in

this dissertation we will always use it. We will always use the term

conformal to mean locally conformal and henceforth write M - VN and

M - VN as in EISENHART[1949].

We now give expressions for the Levi-Civita connections and the

curvature operators on M and M , respectively. Writing g - ;g

X > 0 and let v and v denote the Levi-Civita connectionsI^
compatible with g and g , respectively. Then using

(2.10) <V ,,>- 1-.'
x(YZ> (X<Y,Z> + Y<Z,X> - Z<X,Y>

+ <z,[XYl> + <Y,Ez,x]> - <X,[Y,Z>)

%"%

((2.10) is just the definition of the Christoffel symbols) we have J-

(2.11) v Y = v Y + - ((XP)Y + (YP)X - <XY>vP) .
x. x~ 2 .-

where \ :- log a .

I -'

14
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Calculating the curvature form for v we have

(2.12) R(X,Y)Z = R(X,Y)Z + -(h(X,Z)Y h (Y,Z)X

+ <X,Z>H Y- <Y,Z>HX) + [((Y)(Z

- <YZ> -1II2)X ((X4,)(Z4,) - <X,Z> ,,V II 2)y

+ ((Xp)<Y,Z> - (YP)<X,Z>v\P)]

where R(X,Y) is the curvature form of v , H is the Hessian
e, %

~ ~ . l..*..

tensor which is a tensor of type (1,1) on M with H'X VxV'P

and , 4 (H 4 , X,,. 4, i

and the Hessian form, h , is given by h (X,Y) := <H\X,Y> H is

self-adjoint with respect to the Riemannian metric. See

GROMOLL/KLINGENBERG/NEYER[ 19681.

Our viewpoint and analysis are always local. However, the

distinction between local and global concepts is often fuzzy in the

geodetic literature. Y

A stronger notion of conformality is that of conformal '-
equivalence.

Definition 2.2. Let M and M be N-dimensional Riemannian %

manifolds. Then M and M are conformally equivalent whenever _

there exists a diffeomorphism

f M MV

such that f defines locally conformal maps on neighborhoods of M ,.' P

-a ,r

r' " 
% "% J



and M'

For example, consider the 2-sphere S and the plane E It
2 2

is well-known that by stereographic projection S2  is locally

conformal to E however, since S 2  is compact and E is

ci 2i a2 i

non-compact, these manifolds cannot be diffeomorphic.

h3. THE CLASSICAL FORMULATION

The modern definition of conformal mapping was given in 52. In

sections 3-5 we use the classical definition and terminology.

Definition 3.1. If the metric tensors of V and V are related J. -
N N

N by

(3.1) gij em

where a is a smooth function from VN to the real numbers, then

VN and V are said to be conformally related or just conformal.N N

2a 2

NB: The choice of the conformal factor as e instead of 2

2a
or ,N (used in 2) is mere convenience. The choice of e is nice -.

for differentiation and eliminates many unnecessary factors of 2
1~ 2o

and 2, but has no geometric significance. The function a in e

is the conformal function.

We now define the Christoffel symbols of V :
VN

(3.2) 1 1
ijk (gikl + gjkli - gik

16 -"



(3.3) k hkr(33)i i jh '"i

where "" followed by a subscript denotes partial differentiation

with respect to local coordinates. -

By direct calculation using (3.1), (3.2), and (3.3) we obtain

the Christoffel symbols for VN:

k k k
(3.4) .. = .. + Ai j 1] ! j i.?

where .

Ik 6 ko ki gjgkpp,.:€(3.5) A.. *k + . gkPv
1J 1) J 1 1J p

and where we have written .-

I

(3.6) C. :=Oj3

which are the components of va , i.e., the gradient of o .

NB: We add suffixes omitting a differentiation sign only on %

scalar quantities and only for first derivatives. HOTINE[1969] did

not follow this convention, and in VN we write

k by
ciIi = 

T'iiIj ij

We will denote covariant differentiation with respect to k by

and with respect to i by ";" Directional derivatives

will be denoted by "/" , e.g., the directional derivative of f in

the direction ,\ is

1

17o . _



f :. f .f

The Beltrami differential parameter of the first kind will be

denoted by Alc where

• . . .. ,

i
The Beltrami differential parameter of the second kind (or

Laplace-Beltrami operator) is denoted by A2c and given by

(3.8) A2 a g130.

The usual Euclidean expressions for A a and A2a are U
(3.9) A1  = (vO(va)

where "." denotes the usual Euclidean inner product and

(3.10) A 2 a = v -(w, v v 2 a

we see how (3.9) and (3.10) are related to (3.7) and (3.8) by

denoting the Cartesian metric tensor by

(3.11) =

so that

4...

18 1and
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Note that in VN

YN.

ij # 0Iitj

and 
.*

ij i~ja. ' .. - ,

note also that

"IiIj =i( j .

and by definition one writes "x.

ai] :-i,j - ia] j

The Riemann tensor of V will be denoted by R.. , the Ricci % :1
N hijk J

tensor by R ij , and the scalar curvature by R . The Riemann tensor

of VN is given by N~

(3.12) Rhijk = e (Rhijk + Thijk )  
_

where

(3.13) " =-gh

hijk ghk(ij + gij-hk jik.

- gik hj -Alaghijk

and

19,



(3.14) ghijk ghjgik - ghkgij

Some useful contractions of hijk and ghijk are given by

h

(3.15) .- N 2 .. + (A + (h - 2)Aa1g..

or alternately

(3.16) (N - 2)[oij + gial] + 2(N-1) gi

where

£.

(3.17) : gij, = "i = 2(N - 1)A 2o + (N - 1)(N - 2)AIu , 4..,

hk
(3.18) g ghijk = (1 - N)gi,

ij hk
(3.19) g g hijk ' ( k

(3.20) gh h hhg 
..- _=

9ijk =  jgik - 6kgij =  -:

4-.

6 h

gij gik ,

(3.21) g 6pgq -.h] ghk -k

ghijk hi pj3k ~ i,%gij gik

4' and

(3.22) ghi _hi hi h 1 77
• . jk := j k k i -,'

jk k

2, -%,

-~ -. .,.. <.



0 6P

and where 1K is the Kronecker delta.

The relations (3.12)-(3.22) make it possible to calculate the %

Ricci tensor and scalar curvature of VN * The Ricci tensor of VN

Ri is given by

(3.23) R.. = Ri. + (N - 2 )(Yi + gij(A (; + (N - 2)AlcY)

and R , the scalar curvatures of VN , is given by

(3.24) R= e (R + 2(N - I)A2o + (N -1)(N -2)Alo) Zq ,

As usual

• h hk
(3.25) R :.. h = g R

1) 13-h Thijk
I

and

(3.26) R gJR - Ri

We also have

(3.27) g..R = g.(R + 2(N - 1)A2 , + (N - 1)(N - 2)Al(7)

from which it follows that -..-.

(3.28) giRj - giR - (N - 1)(N - 2)Agi . = __

2(N- l)A 2u'i;
.,,.,. .,

2"2" ,"j

.5.

viz.

21 '. -
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OFi

1 (N-2) A a(3.29) 2gij= 2(N-1) (g,3R - g iR) 2 A 1cijg. .:

Thus we have

(3.30) R. . R.. (N - 2), + ((N - 1)A o + A )gij

1
(N - 2) ij + 2(N-1) (gi.R - gijR)

(N-2)
2 'l1ij'

and therefore

1 .

(3.31) (N -2)j.. R.. - Rij 2(N ) .iR - g.jR)

(N-2)
2 1~gij

Upon replacing a.. in via (3.31) we obtain
ThijkPNo

(3.32) Ch .  =Ch Cij-ijk ijk S...

chThis shows that C defined by
ijk

h h 1 h h h h . -

.-. + 3) R -R + - g R ) ".Rijk ijk j N2 ik k Lj gik j

R h h
(N-1)(N-2) jgik - k i j .

is invariant under a confoimal map. It should be noted that

V5 .*~
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(3.34) hik:= ghpC~ijk =

Rhijk + (N-2) (gji g hkRij + gik1 hj - gijRhk )  r .

(N-l) (N-2) ghijk ,

t, i~s not a conformal invariant since .. '

(3.5)Chik - e Ci

The tensor chij is called the Weyl conformal curvature tensor. .-

The eyltensor is completely traceless, i.e., all contractions --

vanish. It satisfies the usual symmetries:-,"

( 3.36 ) chl = -Chik i:-.. -

'% F

(3.34) C k 9pCij

(337k hijk - Cihjk =jkhi" + 9ik hi gij hk
'

and the algebraic Bianchi identity,

(3.35) C hi h 4""

ijk + j+hjki =0 . -.

however, it does not satisfy the differential Bianchi identity. To X.

sehe thisi twecinetr, od t he cintiaten

which satisfies tuasy erv

(3.40) Lk -i_

,,k -. C

2 3 ,.". •

U .*U'. ",i

:, .,(3.37,. C- ._C,_:--:-... . .. .. .. .. . ... .. . .



,br

I,.%

and

(3.41) Lh  hiL.
jk jk

Then the conformal analog of the differential Bianchi identity is

( 3.42 ) Ch +Ch +Ch = ",
ijk,/' +  it'j,k +  ikP,j

1 h h h h h h(6 L + 6 L + b L + + + g. )L
(N-2) j ikp k il'j 11 Pik + ik jP + iPkj Pk

The singly contracted Bianchi identity is

(3.43) Rijk - Rik,j + ghmRmikjh =0

and the doubly contracted Bianchi identity is

(3.44) R i  Rk,i - 2 R ,k -'

As
From this it follows that

(3.45) L =0
ik

Moreover, an interesting contraction of (3.42) is obtained by using

(3.45)

-N-3(3.46) Ch - N-Lijk,h N-2 Lijk ""--'

We now introduce two additional tensors -- the Einstein tensor

and the Cotton tensor -- which are important tensors in arbitrary

dimension but have particular significance in dimensions 2, 3, and 4.

a.- -%"
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The Einstein tensor is defined by

(3.47) s. := R.- - g .R ,

and the Cotton tensor by

",. .p.

(3.48) A1  R . - i -R.
1- 4 g j

4. SPECIAL VALUES OF "N" " -

We first consider the case N = 2

The elimination procedure used in §3 to obtain a conformal

curvature tensor breaks down for Ri. , Ri - , R , and gi.R when

N 2 . We first show that every V2  is an Einstein space (recall

that an Einstein space is a Riemannian space such that

(4.1) R.- 
-

1ij N gij

or in the case N =2
.r r

(4.2) R - - gi R = Si. .0).
ij 2 1] 1)

I

In a V 2  the curvature tensor has the canonical form_ -: 2

( . )R ijk = K( gik -gij' )) '

and so

(4.4) R = K(gij - 2gij) = -Kgi .--

Hence we have - v'

25



wm

6 or

(4.6) K= - R

Therefore,

(4.7 ) R ] ij gij _ .

so that every V2 is an Einstein space. Now observe that when

N = 2 we have

(4.8) R. - R. + A2(gij ,

(4.9) R - e (R + 2A20]

(4.10) gij gij[R + 2A2il

so that we have . %

I.

(4.11) R RP - (g. P g. .R) =0

or using the definition of S V

1j 1

C and C in (3.33) and (3.34) are undefined when N- 2 .

ijk hijk

°.'. % .p.



4.

-" ., '4

On the other hand is well known that every V2  is locally conformal
p

to every other V2 . -

Now we discuss N = 3 .

The dimension N = 3 is much more complicated than the

dimension N = 2 . Nevertheless, the elimination procedure fails to .4

lead to a conformal curvature tensor and in fact we show that the

conformal curvature tensor discussed in 3 vanishes identically in a

V3 . " ..

Before we show that the elimination method fails when N = 3

we derive several canonical forms for the curvature tensor in a V3

The simplest derivation of a canonical form for Rhijk in a V3  is -

due to WILKES/ZUND(1978) who complete a problem in McCONNELLf 1931].

ijk "
To do this we employ the Levi-Civita dualizors e and contract on

the skew symmetric pairs of indices in the curvature tensor Rhijk

viz.

(4.13) ipqjrsRpqrs

to create a second-order tensor. ipq(jrs is expressible as a ...

3 x 3 determinant in the metric tensor gi-

1) ir is
g g 9

4pq jrs - pr pS
(4.14) 9 9 g 9 ~

9qj 9qr g qs

1
upon multiplication of (4.13) by the numerical factor of and

using (4.14) we obtain

27 4
16 ..



%

ij 1 ipq jr s_
(4.15)pq d

where S j  is the contravariant Einstein tensor. McCONNELL[1931]

calls this tensor the Lami tensor. However, Lank's work was

exclusively three-dimensional and since this tensor has applications ':

in dimensions N x 3 , the name "Einstein tensor" seems more

appropriate. Equation (4.15) has an "inverse", namely

Sp.1

(4.16) R jkq
hijk hip' jkqS

Equations (4.15)-(4.16) enable us to write down several canonical
forms for R First,

'hij k

(4.17) R h.. 9 k gS. + g. -
hik =hkij ijShk ghjSik

%

ik~hj - 2 ghijk "

which we call the S-representation of Rhijk Second, from the

definition of the Cotton tensor and (4.18) we have

(4.18) Rhijk = ghk'ij + gijhk - ghjAik - gikAhj

which we call the A-representation of Rhik Third, upon "' :""
expansion of (4.18), or (4.19), we obtain

(4.19) Rhijk = ghkRij + 9ijRhk - hjRik - gikRhj - 2 ghijk

which is the most common canonical form found in the literature. It

shows that the Weyl tensot, Chik vanishes identically in a V3 1.

However, the S-repre sontit. ,d the A-representation are more

e 

I

%1 -"_, -" ." . k " '-" -" . ''- ''% "'. " " .. .. .. . . . * 
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useful, and the A-representation is particularly nice as it does
hk

not involve a factor of ghijk Contraction of (4.19) via g -.

does not yield an expression for R. ; however, contraction of

(4.17) gives

(4.20) R = S .- + g.jS + Rg ,

so that

* 0

-R(4.21) - 2

Hence we obtain the Einstein tensor of §3! Likewise contraction of :- WIN". '%

(4.18) yields

(4.22) R A + g.A ,

so that .,

% ~ .

(4.23) A R ."44 ' '"I.; ,".-"

and we obtain the Cotton tensor!

The crucial step in the elimination scheme in §3 was the

solvability of (3.30) for . When N 3 (3.31) becomes

1 - -, "
(4.24) R = P 4 (g R - i -j 1- g

and using the Ccttoi tens-. '-8, we have • S-_ 7.- -. .,

(4.25) - ., .
M, .'%. .,. ," . a ,

Substituting this expression in hijk then gives

':., ... ,.:..-. .',

" .--

29"
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2a i(4.26) Rhijk = e (Rhijk + Thijk )  %- ,~ y

=e R A. A.
hijk + e ghk(A - 1]

- IA g.ij) - ghj(Aik - Aik

1J
- ikAl ) - k(A - Ah"

1A9 ] 1 e A 1('ghi%

Therefore, -

(4.27) Rhijk - ghjAij - gijAhk + ghj + gikAhj =...

e (Rhijk - ghkAij -- gijAhk + ghj'ik + gik Ahj

but this reduces to 0 = 0 by the A-representation of Rhijk

(4.18). Thus the elimination scheme again fails to give a conformal

curvature tensor in 3 dimensions. •

The foregoing shows not only that the Weyl tensor vanishes

identically in a V 3 f but also that the Cotton tensor and the

Einstein tensor naturally occur. The former plays an important role S

when we consider integrability conditions in conformally flat spaces

in the next section. . -

'%% . .

5. INTEGRABILITY CONDITIONS AND CONFORNALLY FLAT SPACES

? %- -..,

Definition 5.1. If VN and VN are conformally related and VN is
, .~ .%.

flat, i.e., VN is locally isometric to N-dimensional Euclidean• __

space, EN , then VN ,confornilly flat. A conformally flat space

' ...
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will be denoted by CN

We seek to develop necessary and sufficient conditions for a VN

to be a CN This problem will be addresed in two parts, first,

N > 3 , and, second, N = 3 The case N = 2 is not of particular

interest since as noted previously any V2  is conformal to any other

V 2 2

Preliminary to this problem we suppose N > 2 and assume that

the curvature tensor of VN can be represented in the form

(5.1) Rhijk = ghkXij + gijXhk ghjXik gikXhj ..

where

(5.2) X.. X

13 -

and

(5.3) X g xii

are to be determined. The representation (5.1) is called an

X-representation of Rhijk - From (5.1) we have
%a ,

hk
(5.4) R. := g R = NXi + - Xi - Xi

Sjhijk 'ij gj ij 'ij

so that

(5.5) R =(N- 2)Xij +Xgij

and *.

R gi R 1()X .N''%

(5.6) R (N= -

31a- ...-%

31 . . a.'.5



Hence, we obtain

: (5.7) -ij (N-2) (Rij - g. '

or

%, '.-

(5.8) x, g)
(. -2 (R ij 2(N-1) gij

We may draw the following conclusions:

(i) If Rhijk has an X-representation, then it is solvable

for the X-tensor and its contractions. .. -.

(ii) Expanding the X-representation yields

(5.9) R 1N2) ghki + gjRbk -hji - gikR h

(N-l) ghijk

We have thus proved

Theorem 5.2. For N > 3 the Weyl tensor vanishes if and only if the

curvature tensor has an X-representation.

Let V and V be conformally related. From (3.12) and
VN N

(3.13) we have

(5.10) Rhijk = e (Rhijk + ghkoij + gijhk -ghjik

- gikhj- ghijkAl7)
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and from (3.23) and (3.24) we have

(5.11) R.. - R + (N - 2 )7ij + gijtA 2c + (N - 2)Ala) .-.

and

(5.12) R = e (R + 2(N - l)A2c + (N - 1)(N - 2)Alc)

Hence we find that

(5.13) gijR = gij(R + 2(N - 1)A27 + (N -1)(N - 2)AIa).

Eliminating A2o from (5.11) and (5.13) we obtain

(5.14)) G(TN-

(5.14) = 2) [(Rij Ri )  2(N-) (gijR - gijR)]

V 1
- g 1jAlo "

2' ^i 1$*

Upon replacing this value of (i in (5.10) we see that Rhijk has

an X-representation if and only if has an X-representation.

Now suppose N > 3 and let Rhijk =0. Then R 0 and

R 0 , so that

(5.15) j -×ij 2 gij'.

or

(5.16) 0.. = (1(1. - X.j 1 gijAl0
1,J~ 11
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Replacement of this in (5.10) shows that Chijk= 0 and that Rhijk

has an X-representation. That is, Chijk 0 in a CN

Conversely, suppose that Chijk = 0 and that a is defined by

the differential equation (5.16). For a7 to exist ai' j  must be

symmetric in i and j and (T. must satisfy the following
1j

integrability conditions:

(5.17) - =(j Ri,j,k h~ ijk .

It is easily seen that U. - is symmetric, and differentiating

(5.16) we obtain .

(5.18) oi,j,k 'i°i,kjj +  ij,k 9 ij- 1 k(5j)( i ~kj xj 1 2 i(Alno-

Interchanging j and k gives

5.19) 'i,k,j = i +i - Xik,j - 1

Thus, we have '-

"( 5.20) 0 i,j,k - "'i,k,j = A"h

-x 1 (Aa))

Si,k j - 0 i,j k + Xikj Xij,k + 1(gik(Aj)j - gijAl ),k)

and using (5.16) and Theorem 5.2, the integrability conditions become

merely

(5.21) Xijk Xik,j =0.
.1

But these follow from (3.46) when = 0 Thus, a function o

hij



satisfying (5.16) exists. If we define VN by gij = e g i j  where AS

Cj is the function of (5.16), then a straightforward computation .

shows that Rhijk = 0 . Thus, we have the following theorem. %

Theorem 5.3 (Schouten's Lemma) SCHOUTEN[19211. A VN (N > 3) is a -
CN if and only if the curvature tensor of VN  has an "

NN

X-representation.

We also have

Corollary 5.4. A V N (N > 3) is a CN if and only if the Weyl

conformal curvature tensor vanishes.

In 3 we defined the Finzi tensor:

(5.22) Lijk =Rij k -Rikj + 2(N-1) (gikR,j - gijR)

and we now observe that AA-

(5.23) Lijk = (N - 2 )(Xijk - Xikj)

If VN and V are conforrmally related, then the Finzi tensor in
V N "N

V is
N

(5.24) Lik M- 2)( k - Xik;j) ..

i....-j?

Writing (5.24) in terms of un-hatted objects we have .

'.4', .
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(5.25) L.. = (N- 2)(Xi - Xi.)ijk ij;k ik, j

= Lij k + (N - 2)[aXik kXij + gikgmp(X m
ijk [ k C + p -7 0.-.

gi gmpp i,jk i,k,j k--

+ aa] C7. mp -
gjikk pgm

jik] + ( p1  ( a,--

gi j am c p 0 km ) + A 1 0 ( g i kryj - i j'k ) "

+ gij (A - gik(Alji),i]

which reduces to

(5.26) Lj =Li +cX -X + g x.
ijk ijk +jXik -kXij + gikg p jm

- p g. g 0
gijg pXkm + -'ijk -"ikj

By the integrability conditions (5.17) on a we obtain

(5.27) L =Li XT -a +gA gmPijk ijk + "iXik -kXij gikgp ijm

MP h
gijgm p Xkm + (IhRhijk

Hence, if Rhijk has an X-representation, then Lijk = Lijk ; and

if L = L then R has an X-representation. Thus, we
ijk ijk t hijk

have proven

Theorem 5.5 (Finzi's Theorem) FINZI[1922]. In VN(N 3) the Finzi ...

tensor is conformal invariant if and only if the curvature tensor has ....

an X-representation. .

- --..... '$
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Corollary 5.6. In VN(N > 3) the Finzi tensor is a zero tensor if
* 0

and only if VN is a CN

We now consider the case N = 3 -e.OWN

By Theorem 5.5 we know that the Finzi tensor is a conformal ,vv --

invariant in V3  since the curvature tensor of V3  always has an %
.

X-representation, viz Xi= A.. , the Cotton tensor. If we define

a by (5.16), then the integrability conditions are

r. % - --- %-,%.

(5.28) L ijk 0 *%?,.

* 0
If we insert (5.15) into (5.10) we have

(5.9) bij = .. " % '-%.'.. o
(5.29) 0

If Rhijk = 0 we have R = 0 and R = 0 and so Xi- 0-

Therefore, we find that

(5.30) L = 0

Hence, we have

(5.31) Lj =0

since Lijk is conformal invariant. Thus we obtain

Theorem 5.6. A V3  is conformally flat if and only if the Finzi

tensor is a zero tensor. . ..-..

% %
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NB: There is no Weyl tensor in a V3

To surmarize, we have obtained necessary and sufficient

conditions for a V N(N 3) to be conformally flat. Additionally,

we have derived an often-neglected result (Theorem 5.5) on the Finzi

tensor.
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CHAPTER III "

TRIPLY ORTHOGONAL SYSTEMS

.,-,-.'.

Nl. TRIPLY ORTHOGONAL SYSTEMS OF SURFACES

Since a point on a surface is determined by two parameters, a

point in space may be determined by three parameters or curvilinear

coordinates. In E3 , for example, we may transform our Cartesian

= ( 1  2 3xi  (X ,x ,x ) by means of the equations

(1.1) x = x (uv,w) i = 1, 2, 3

where u = (u,v,w) are curvilinear coordinates. The surfaces

u = C1 , v C2 w = C where C1 , C2, C3  are constants, are the

coordinate surfaces and they intersect in coordinate lines. Examples

are cylindrical and spherical coordinates, i.e.,

1 2 3(1.2) x U C V u sin v , x = w

and

1 2 3(1.31 x = u cos v cos w , x = u cos v sin w, x = u sin v

respectively. The line element in our space will then take the form

2 0x O m n%
"... 5...

(1.4) ds2  e , dx dumdn
lu U

m  (Iun '.-".

Of particular interest are those coordinate systems for which

dx i ""'•

(.) = 0 n m.13 ] Jum ,ln

39- 
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In this case the line element becomes %
"o. e

(. 6x' ox3  2 O x v 2 x dxi 2ds2  6i] Ou Ou du + du Ov d +- dw Ow I'
and the quantities

S.

()X i  )x i -
Ox' __(NS on m')

.5," ..'-

'S . . .

are conventionally denoted by

2 Ox Ox(1.7) h :=,.. (NS on ml)m J m "m

so that

z 2

(1.8) ds h du-Im ..m,.

= hl2du2 + h 2dv2 + h 2dw2
1 2 3

and the functions h are called scale factors. The coordinate
m

surfaces of an orthogonal coordinate system give rise to a triply

orthogonal family of surfaces. The simplest example are Cartesian,

cylindrical, and spherical coordinates where the coordinate surfaces

are respectively planes; planes and cylinders; and planes, spheres, -

and cones. we give one less trivial example.

Example: Confocal quadrics are given by

(9) x2 2 z 2 2 21.2 2 a <b < c
a -u bu -

- .

.5**l VS~ .. .. .. S... .7 %~~~ S~d.".. .- o-' |
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When u < a2  (1.9) gives ellipsoids, when a2 < u < b2  it

2 2
represents hyperboloids of one sheet and when b < u < c it

represents hyperboloids of two sheets. If we re-write (1.9) as

a2u b2u 2u'-ua-_< 2 ,

x2 2 2 2 2 2

(.0) < v <b < c
22_ 2_

a-v b -v c -v

b2 2 2 -.. ,*

2 2 2 2
+ + z = 1 a <b <w< c

2 2_ 2_a -w b -w c -w

the line element takes the form

ds2  hl2du2 + h2
2dv2 + h3

2 d 2

where

2 1 (u-v)(u-w)
h (1 4( 2 2 2

(a -u)(b -u)(c _U)

2 1 (w-v)(u-v)
(1.11) h =( 2 22 4 (a 2_v)(b -v)(c 2_v)

h32 1 (u-w)(v-w)h =- (..'
3 4( 2_ 2_ 2_

a -w) lb -w)(c -w)

We now give a proof of one of the fundamental theorems on triply

orthogonal systems. .

if% C%-
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Theorem 1.1 (Dupin): The curves of intersection of a triply

orthogonal system of surfaces are lines of curvature on each of the

surfaces. See McCONNELL[19311, p. 216.

Proof. For clarity we present the proof in the form of four

assertions.

Assertion (i): We have

(1.12) T = h T +ds 1,2
ds

where r is the geodesic torsion, T is the torsion, h is theg

Euler tensor, 8 is the angle between the unit surface normal and the

unit principal normal of the curve and x are the surface

contravariant components of the unit tangent vector to the curve.

For a proof of this assertion see McCONNELL[1931], p. 214.

Assertion (ii): If a curve is the intersection of two surfaces

which cut at a constant angle, then the geodesic torsions of the

curve on the two surfaces have the same value.

Proof: Since the unit surface normals along these curves make a

constant angle the rate of change of the angles 0 , 0 with respect

to arclength the unit surface normals and the unit principal normal

must be the same, hence

do + d'(1 .1 3 ) T T I T d I ' d s .g 2

where T gl and Tg2 are the geodesic torsions on the first and

second surfaces, respectively. ..'

V"F.o .,. •
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Assertion (iii) (Joachimsthal's Theorem): If a curve is the A-

I
intersection of two surfaces which cut at a constant angle, then if

the curve is a line of curvature, viz T = 0 , on one surface it is %

a line of curvature on the other. See McCONNELL[1931], p. 215.

Proof: Follows immediately from (ii).

Assertion (iv): If two curves on a surface cut at right angles,

then the sum of their geodesic torsions is zero.
I

Proof: Let \(' be the components of the unit tangent vector of

the curve on the surface and let p f N be the tangent vector

of the perpendicular curve. Then
I

(1.14) h h X

= 3 6 .
b 6 N b( p -X'

-61a fl
b b13 p f1  a ) a b136 f) --T

ao b " .f) -T
rl[36 f3 gp

Combining assertions (iii) and (iv) we get Dupin's Theorem.

Dupin's Theorem has a generalization due to DARBOUX1910]".

Theorem 1.2 (Generalized Dupin): A necessary and sufficient

condition that a third family of surfaces can be associated

orthogonally -- viz be a component of a triply orthogonal system --

to a given pair of orthogonal families is that every surface of the

two given families intersect each other in a line of curvature.

We postpone the proof of this theorem until Chapter IV h5, but .7 .
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we note that Generalized Dupin implies Dupin and that Dupin furnishes I

the necessity of Generalized Dupin.
% %~

S2. THE CAYLEY-DARBOUX EQUATION
) 1

V

Let E denote a three-dimensional Euclidean manifold having -. .,.

the line element

(2.1) ds2  -g-"duiduj

where g = h.h. are the curvilinear scale factors and

u= u,v,w) are local curvilinear coordinates which are functions . •5,.
= ( 1  "-2- 3'

of the Cartesian coordinates x (x1 ,2 x3) Following

DARBOUX[1910] the equations u=C 1 , v=C2 , w= C3 , where
2= I. 3.

CI, C2  C3  are constants, are said to define a Lam* system of

surfaces, i.e., a triply orthogonal system Y , in E3  and each

equation defines a Lame family of .

It will be convenient to work with the functions u,v,w E3 -. I

and to denote partial differentiation with respect to the coordinates -

ii
x by subscripts, viz. ui , u.j = uji , etc. We will use Cartesian

tensor notation: Latin subscripts range from 1 to 3 and repeated

subscripts obey the Einstein summation convention. The Schouten

bracketing convention is employed to denote symmetrization and skew-

symmetrization on subscripts.

A version of the following material will appear in Tensor, N.S. See
ZUND/NOORE 1986 ].

-.--. :--
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The orthogonality conditions for the curvilinear coordinated

surfaces can then be written

(2.2) = ulv. = 0 , g23 ..vw. 0 g U.W. 0" .'r'. -91 'i' 92 gii 13 uli i ,0.

It is important to observe that the conditions in (2.2) are symmetric

under a cyclic permutation of the parameter functions u, v, and w

We extend this observation to the symmetry principle: for any partial

differential equation obtained by differentiation of (2.2) with

respect to xj  there are two analogous equations which arise by a..,.

cyclic permutation of u, v, and w

Suppose that the Laei family is defined by the surfaces

u = C1  Choose any one of the equations (2.2) involving u, e.g.,

i-uiv = 0 , and differentiate it with respect to x

(2.3) uiv. +uiv i =0 .

We note that (2.3) allows us to replace the second partials of v , .

with second partials of u and we call this the replacement

propery.

Contracting (2.3) with w. and employing the symmetry property, .-"
3

we obtain two analogous equations. Upon adding two of these and

subtracting the third we have :
,2'>.. -.

(2.4) v(iwUi + uiWjlvij +U[ivJlWi =0. - -

But since this expression is symmetric in the subscripts i and j

it reduces to

v.w.u.. = 0 . '

(2.5) v 0

45
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k
Now calculating the partial derivative of (2.5) with respect to x , 6,1

contracting the result with uk , and using the replacement property

on the partial derivatives of v and w yields

(2.6) A. .v.w 0

where

(2.7) Ai. :=u suij s  2u isujs

".2.
Equation (2.6) may be regarded as a linear equation in the six

unknowns:

(2.8) X. : viw

and to emphasize this, it is convenient to re-write (2.6) in the form

(2.9) A....=0iJ 1)

If the unknowns X.. can be eliminated, we will obviously obtain a

" third-order partial differential equation involving the parameter

u . To effect this elimination by a determinant we require five

additional equations involving the X. It turns out that these

are easy to get. First, by using (2.8), (2.6) can be rewritten as

(2.10) u .X. . = 0

and by using (2.8) we also have

(2.11) X. . 0

The remaining three equaticnc am qiven by

%. % %,
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(2.12) u i = 0 , •

by virtue of the orthogonality conditions (2.2). Thus the desired %

elimination is given by the determinant _

A A A 2A 2A 2A ..

11 22 33 23 31 12
11 22 u3 3  2u2 3  2u3 1  2u1 2

1 1 1 0 0 0 S
(2.13) u1  0 0 0 u3  u =0 ..

0 u2  0 u3  0 u

0 0 u3  u2  u1  0 S

which is the Cayley-Darboux equation. Substituting (2.7) we may

write (2.13) as a difference of determinants •

u11  u22su 2u 2u
lls  22s  33s 23s 2u31 s  12s

u u u 2u2  2u 2uS 22 u33 23 31 12

1 1 1 0 0 0 S

(2.14) 0= u u 0 0 0 u3  u

0 u2  0 u3  0 u

0 0 u3  u 2  u1  0

u 1 u1  u 2 u2  u 3 u3  2u 2 u3  2u u1  2u 1 2UIs ls U2sU2s U3sU3s 22sU3s 23s ls 2lsU2s,--.

1 u 22  332u 2 3  2u31  12

1 1 1 0 0 0

-2 u I  0 0 0 u 3  u

0 u2  0 u3  0 u1

0 0 u u u 0
3 2 1

47
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It should be noted that these equations show that the Cayley-Darboux

equation is linear in the third partial derivatives, cubic in the

second partial derivatives, and quartic in the first partial

derivatives of the function u An explicit form for the

Cayley-Da rboux equation can be exhibited by expansion of the .

determinants in (2.13) or (2.14) and the results may be written as

3 2...,
(2.15) ((usu -2U u )[u u + uS(as (is ( (3 u, a + uua

2 (u3 2 20, -, p/. - , ap ut u-u up u(1 u .'  ,.'..
"uu (u u +u uuuu

fl S OP s sU/s.' ..

u(u u -)u2 + (u u )u u

2 2 2
+ (u - u )u + 2((u a + 2 ) upup,

a 99 a 9 .,+ .,

2 + u )u u )M = 0

where the summation sign denotes the sum of a cyclic permutation of

the Greek indices a, 9, • over 1, 2, 3. Inspection of (2.15)

shows that the Cayley-Darboux equation contains 324 terms. The most

general example given in DARBOUX(1910] contains only four terms.

$43. THE THEOREM OF LIOUVILLE

Using the tools we have developed in this Chapter and in Chapter

Ii we give a concise proof of one of the most amazing theorems in

geometry and analysis.

i 4 o,2 "V-
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Theorem 3.1 (Liouville). The only conformal maps of EN to

EN(N > 3) are similarily transformations (isometries and homothetic

P

maps) and transformations by reciprocal radii (inversions in a

sphere). ..,

This is in sharp contrast to the case N =2 where there is a ,.

rich supply of conformal maps. we give a proof, due to BIANCHI[1910

using the Lano equations, that is valid in three dimensions only.

For a proof for general N see DUBROVINFOMENKOhNOVIKOV h1984].

sI l

Proof: In a triply orthogonal system, ui  (uv,w) in E3  the

line element has the form
A

2  h 2 2  2 2 2 2%
(3.1) ds hdu + h2 dv + h3 dw

where

ds = h du
u 1

(3.2) dsv = h 2dv

ds = h3dww 3

are the respective arclengths along the coordinate lines.

The Lame equations are Si] = 0 and following McCONNELL[1931], 5.

p. 156, we have
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h h h +-h h123 h 23h12 h 32h13
1 3

(3.3) h = - 1hh + 1 h1h
21 h 31 23 h h1 3h2 1  __

3 1
1 1 "''

h h h + 1 -h h31 h h12h31 h 21h32
1 2

where h h and h ha We also have
ab alb abc :=albic

_ ( h)  + 1= -... + -_.

I h21)l + 1 h 12 2  h1 3h23 2 03
1 2 h3

(3.4) (L h- + h) + h h... 0
h 32h 2  F3 h23) 3  h h21h31

1 1 1+ h ) + h h =0h3 h1 3)3  h 31 1  2 32 12

3 1i h2 J ~4

The Lame equations are necessary and sufficient that the quadratic

form (3.1) be reducible to
.- i

(3.5) ds 2  (dx 1)2 + (dx2)2 + (dx 3"2

i 1 2 3,.:-
where x = (x ,x ,x 3 ) .. Z

i 1 2 3 # -
Let x = (x ,x ,x ) be a local coordinate system in E with

1 -2 ̂ 3x (x ,x ,x ) the coordinates of the image of x under a

conformal map, viz.

(.6)i i 1 2 3
(3.6) x f (x ,x ,x

Then the conformality of the mapping E3  E3  requires that the
I

ratio

% % .
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be independent of dx and dx viz.

(3.8) h. dx'dx3 (1/\2 h dxidx.1'] ..
1j 1 2 3 *4.4% . .

where A is a function of x , , = \(xl,x2,x 

In the Lam equations (3.3) and (3.4), putting x = u and
", " '. ,

each h. = 1/A , we obtain

\ 0
'23

(3.9) 031 = 0

12= 0

where a := a 'and
ab laiab

(3.10) + '\22'22 +  3 X + A - A1 A "'1 2 2 33 '33 1 Al\'

where A is the first Beltrami differential parameter with respect

tog.gij j.

Equation (3.9) implies

(311 A= ~ 1  2 3
(3.11) N x(x + Y(x2) + Z(x

and substitution into (3.10) gives S

*2 + 2 -2 
I.

(3.12) - + Z k constant
.(X 4 Y 4 Z)

"-  
.
--

4.

-

where "-" denotes differentiation with respect to the independent
'.4
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variable.

Two cases occur according to whether P

(i) k = 0 or (ii) k 0.

In (i), k = 0 implies X=Y=Z= 0 hence X, Y, and Z are

constant, and therefore

3.13) N = const. .,,

This is the case of a similarity transformation, and f E -- E
3 3

is an isometry or homothety.

In (ii) it is convenient to write k = 2/c where c 0 is a

constant. Then integration of (3.12) yields

X 1 ((x 1 2 b 1X=-( -a ) +b)
c

1 2  2 -2(3.14) Y =- ((x a) + b

Z 1 ((x3 a 3 2 + b3
c ,

But (3.12) also requires *"

1 1 2 2 2 2 3 3 2 1 2 3(3.15) (xI - al) + (x -a ) + (x - a )2 + b + b2 + b -

3
i 2

> (x -a)

viz.

3 b,
(3.16) b = 0 . * .i=l i"

Thus,



(3 .17 ) A 2 r : '
. %

where

(3.18) r2  ( i2

Hence,

2 .1- -
(3.19) 6. .dx]dx3 6i dxidxJ.

r

so . <

cx(3.20) x rr

which are the formulas for transformation by reciprocal radii, i.e., %

inversions. Hence the theorem is proved.

%, .. •

'..-w..

53



-*'-' ?WWWV W.-_-. li

CHAPTER IV

DIFFERENfTIAL GEODESY

hl. INTRODUCTION -

Martin Hotine in HOTINE(l966b] and in HOTINE(1969] sets forth

the hypothesis that any sufficiently smooth function 0 : E3 - I?

with non-vanishing gradient can be a member of a triply orthogonal

coordinate system for E3 . Hotine notes that this is at variance a-'

with classical differential geometry, which states that for a

function to be a member of a triply orthogonal system it must satisfy

the Cayley-Darboux equation of Chapter III, 2. Hotine then asserts

that this equation is an identity when the Lanmv equations are

satisfied. See Chapter III, l3. Although it is difficult to

determine when the Cayley-Darboux equation is satisfied we shall .

develop machinery, in particular, Ricci rotation coefficients, that

will help in this question.

Hotine wants his assertion to be true since in geodesy the

primary object of study is the shape of the geoid. If its potential

function were a member of a triply orthogonal system, it would
3. ..

automatically provide a natural physical coordinatization of E for

the geoid. Unfortunately, as we will show in this Chapter, Hotine's

argument is false and his hope for such a result cannot be realized.

1,2. CONFORIMAL MAPPING AND ISOtETRIC IT4ERSION

Throughout this Chapter, Greek indices range from 1 to 2 and

Roman indices from 1 to 3.

Let V be a 3-dimensional Femannian space with metric tensor, d' .P ,
3 • % *%

? .-. '
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gi] curvature tensor Rhijk Ricci tensor Rij and Christoffel

symbols Ik. Let V be conformally related to V3  with metricil 3 3,

tensor ".

20r(2.1) g.j =e g.j

where ,:V 3- P is a smooth function. Let V2  be a 2-dimensional

subspace of V3 with metric, or first fundamental tensor,

i 1i2
(2 .2) % [3 = gijx~xfl

where xi(ul1u
2  is a parameterization of V2 , and

i Oxi  .i ~
(2.3) x0 aU ... ,.

(I

Equation (2.2) requires that V2  be isometrically immersed in V3

The obvious question is whether under the conformal map, is V
2

isometrically immersed in V ?

First, we have

I j 217(2.4) a of3 gijx xI3 = e a(,

V('ij -(

so that V2  and V2  are conformally related. N.B. As in Chapter

II in defining the conformal map we impose the same local coordinates

on both V3  and V i.e., xi = x3 ~3,F

Let V2  have unit normal vector, . , with covariant components,

and contravariant components, . Under the conformal map we %'

have

5 %
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(2.6) e , ".

~.4

By Gauss's formulae we will deduce the second fundamental tensor b .

of V Using the notation of Chapter II to denote covariant

differentiation, we have

(2.7) n = x ; x n n a P

n n n
(2.8) (x - a

and

(2.9) = n e (b a r

where /"

Hence, we obtain

(2.10) b = e (b -

We must now check that the formula of Weingarten holds in V
3'

i.e., %

n ^b n-- " " "
(2.11) n =-a/i b /x n

By direct calculation we have

VV

U' * .. .. .. .. .Y ?.
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(2.12) n n~ ;ix e( n, +l 61 f CTn

where U n :=hj 9i o ha

n - n n(2.13) ;( e 0~ + A7~ )77

However, we see that '-

n n'

(2.14) -a b X. =-e a (b -a a )xn

-(7 n n
-e(4

00

-a n nl e
e 4 + (7 .4. %

and thus, Weingarten's equations are satisfied.

We now check that the equations of Gauss and Mainardi-Codazzi rv~.

hold in V3  i.e., ~4
3 10 .1 .1 - J *

(2.15) Rt 3  b bm -b bA + Rhijkx xf3 'xX6 ,1 0' %

(2.16) b -b -h 1 i j k 0
(T[3; (r YfW Rhijk 0 1 X

Equation (2.15) is the Gauss equation and (2.16) are the equations of j

Mainardi-Codazzi. we verify these in the usual way using (2.2), ~N
eq .. 4

(2.10), (2.11), and

(2.17) n np I~ - (~; j 1~ T() n RAN

Employing (2.10) and (2.11), (2.17) becomes
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-6a h -(2.18) a x (R -(b b -b b )
6) Cyofh (Y7( 1 Cy~ nf3 C"

h -b b ) R h xxs k=0,
N'~ Wi[ ijkx a (

and upon multiplying (2.18) by g .0 and contracting on h we p.i
hj f3

obtain

(2.19) R =b b - b b + R.xx X
00,6h (1- flo (hu) n6Rijkxf3Y P 1 6

Finally, multiplying (2.18) by and contracting on h we have

(2.20) b~ xbr~~ h X X =0

Thus subspaces act "properly" under conformal maps, viz
0N

isometric immersion is preserved under (2.1).

3. RICCI ROTATION COEFFICIENTS IN V AND V
3 30

Let fe a denote an orthogonal ennuple, i.e. , a set of unit

vectors which are orthogonal and have the components e a where the

index "i" is a contravariant tensor index. Then we have

(3.1) gi e e3 = 1 if a = b ~;

a b
= 0 if a e

(3.2) gi e e =-'

ia h ab

By convention the ennuple indiex will be written adjacent to the



letter denoting the vector. The letters a-g will denote ennuple

indices and h-p will denote tensor indices.

Definition 3.1. The Ricci rotation coefficients are given by

-- i
(3.3) 3 =. e

abc ai,j b c

NB: The -abc are invariants under coordinate transformations but

not under ennuple transformations.

The rotation coefficients are interpreted as the rate of

rotation of the ennuple vector e with respect to e and e .

The rotation coefficients are related to, but not identical to the . .

Cartan structural coefficients.

It is easy to see that

(3.4) aab 0 (NS)

(3.5) aca + c '-c 0

Under a conformal map V3 - V3  the components of {e a.l

transform as ,.

e , = e e , i.

(3.6) a a1ee.,
ea =e ea *-'"

where (T is the same function as in (2 1). we now compute the

595
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rotation coefficients, Iabc 'of the ennuple (ea in V3  By

direct calculation we have

aij = eaiIj ij eak

= (e ea~j - e( I j eak

k k
e (ajeai + eai -v ij eak ".',.eA,

k km
- ae .gg 0.e-ak)

=e
0 (a(e +e oe - j~e + g. em)j ai + eaij 'j'ai - aj + ij mea

=e~(e. .- ue.+gu )Cy.
= ( e a j i e a + g i j o / a )  ,- .- -

ai,j 'i aj ija

where o a.e Thus, we have/a i a r.i

(3.7) e e a-(e jeai;j ai,j -iaj +gij./a

Moreover, we have the equation

i ; J -0 i J i i O a -- " . .

(3.8) ea = e (e - a ea] + b .--.-.

by virtue of

(3.9) gij;k= 0

and

(3.10) g = 0

Hence, we find that

I-.-.-

.*- -.:
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(31)e b ec e- 6 + o )
(3.11) abc eai;= (abc - /bac / 6bc

and

(3.12) ' abc e abc

when a, b, c are distinct. 21

We now give a definition that we will need in the rest of the

Chapter.

Definition 3.2. A congruence of curves in VN is a family of curves

such that one of the curves of the family passes through each point

of a chart of VN

If is a vector field defined on chart of VN , then the

integral curves of define a congruence of curves and the vectors

g are the tangent vectors to the curves of the congruence.

4. OTHER CRITERIA FOR CONFORMAL FLATNESS ) .
I

In Chapter II, h5, we showed that for N > 3 VN is a CN if

and only if the Weyl tensor Chijk vanishes; and that for N 3 VN

is a C if and only if the Finzi tensor L. vanishes. In this
N j

A version of the material in this section has been submitted to
Tensor, N.S.
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section we will give criteria for conformal flatness involving

orthogonal ennuples.

Theorem 4.1 (Schouten-Eisenhart) SCHOUTEN[1921] and EISENHART( 1949j.

VN is a C (N > 3) if and only if for every orthogonal ennuple
N N

,2 ..,-'.

h i j k
(4.1) R Rijke ebec e -

abcd .- R a eb c d

for distinct values of a, b, c, d = 1, 2, ... , N %

Proof. The first half is easy. If VN is a CN then

Chijk 0 so thit .

h iecjedk ':.
(4.2) C :=C e e 0

abcd hijk a eb eed=0

and we have

.5(4.3) R 1gR4. abcd - 2 - gadR + gbdRac

R
-gbcRad ) -(N-2)(N-l)(gacgbd gadgbc )

and for an orthogonal ennuple we have ga = 6 ab Thus we have that

Rbd 0 for distinct values of a, b, c, d.

To establish the converse we must first exhibit the ennuple

components of the Weyl tensor. For distinct values of a, b, c, d

these are

(4.4) Cabcd Rbd 5%,,

.5 IS... -.

.5 m- %w



p.

(4.5) C =R +  R (NS)
abad abad N-2 (NS

1%
(4.6) Cbab =Rbb N-12 (Rbb + Raa)

R ((N-I) (N-2) '(NS) j

where % .

.I. p
(4.7) Ra := iea eb .' ..

Hence, we have the equations ..

(4.8) R abcd 0f

(4.9) Rabad = --2 R , (NS)

1 R
(4.10) Rbab = - W (Rbb + Raa) + (N-1)(N-2) (NS)

These are easily seen to be equivalent to . .p

(4.11) Rbd =0.

(4.12) Rabad Rcbcd (NS)

(4.13) Rabab + Rcdcd = Racac + Rbdbd (NS)

from which it follows that all the components of Cabcd are zero.

We now give a more geometric criterion for VN to be a CN

This was first established by RICCI[19181 for N = 3 and generalized

by FINZI[19221 for N > 3

-.... ,
63
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Theorem 4.2 (Ricci-Finzi). VN is a CN, (N 3) , if and only if

there exists an orthogonal ennuple of {e I such that the

correspondence congruences of curves [I } (curves having tangent

vectors e ) are normal and isotropic, i.e., their rotation

coefficients abc satisfy the respective conditions:

(4.14) 0b

. abc .abc

(4.15) abb = NS)-." ( 415 ) 'abb 'acc. z

for distinct values of a, b, c = 1, 2, .... N

The condition (4.14) for normality imposes N(N- 1)(N- 2)/2

conditions on the abc and has the usual meaning, viz. that there

exists an N-tuply orthogonal system of (hyper)surfaces Ya}
a

r Inogonal to the respective congruences U!a} The isotropy
a

mnditicons 14.15 impose N(N - 2' additional conditions on the

and by the familiar geometric interpretation of the rotation

.'fi ients this means that each I is turning, i.e., "rotating",
a

ano :atsin each of the directions eb (b x a) specified by

'he 2het' enes I Thus (4.14) and (4.15) reduce the number

2
f independent ictation coefficients from N (N - 1)'2 to N

Ricc7i prc.. thin for N = 3 by directly integrating the system

-f equations 'iven by (4.14) and (4.15) and noting that the resulting

" pace was a r- or N > , Finzi observed that (4.14) and

(4.1;, when substituted in the rotation coefficient expressions for 4

. .... . ,..,,
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(4.16) Rabcd := abc/d - 'abd/c

+ 7(abf (fc d  fdc )
%f

,, ..- ,..

+ fad f b c  - f a c f b d )

led to equations (4.11), (4.12) and (4.13). .,[.

We now prove a Schouten-Eisenhart like theorem for N =3. .'---

Theorem 4.3. V3  is a C3  if and only if for every orthogonal .-

e n n u p l e f C a %"" '

.h .'*kLijkeieb~e
k  

' -. hi.

(4.17) Lab c L= -e b e" c -

for distinct values of a, b, c 1 , 2, 3 '

,'. .-.-.

Proof. Let {ea }  be an orthogonal ennuple and define another ..

*I,- . ,P

or thogonal ennuple e) by a

We now provee ScotnEsntli ke thoe foiNie

ea  -'a  _ , b ,. .. %

i. .'

for arbitrary values of the scalars li and i, Then by (4.17) we '..

have Z-.

j- A

(4.19) L b :e= e 0ijk

a''' ijk' ebe =

and by using (4.17) we must have .1,2, 3

at :7a
(4.18) o' -- e + ,-

6h~ 5 - "b-'.

e =",e,7",
• " , " " " " . . . . . . .. .c ' '

.'°. " 4 . ."." for . arbitrary v lues of.th scalars-'.j- . and " '.' ',-",' .'o,, 
- Then' by_ .'% 1 7) . % %,%% " we . • ..,, - -,.
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% W r

%

(4.20) 11,(Lbb - L 0 (NS) %

Thus, since )I and are arbitrary it follows that

(4.21) L Lbb (NS) p.

aac b

for distinct values of a, b, c However, (4.21) holds for

a, b x c and upon summing over a we have

(4.22) >L 2L , (NS on b)
aac bbc

a

but the left-hand side is identically zero by the doubly contracted

differential Bianchi identity. Thus Labc = 0 for distinct values"

of a, b, c implies Lad 0 for a X c . Therefore, L = 0
aac abc

for distinct values of a, b, c requires that the space V3  be I

conformally flat. The converse is obvious and our proof is complete. r

The relative effectiveness of the Schouten-Eisenhart and Ricci-

Finzi criteria can be easily seen. Suppose V (N 3) is given and

N

it is required to determine whethet VN is a CN . By using the
NS N

Schouten-Eisenhart criteria (Theorem 4.1 or 4 .3) we would choose an -

orthogonal ennuple le } and test for R = 0 or L = 0 If
aabcd abc

Ra 0 or L x 0 we are done and V is not a C But if

abcd abc N N *..
Ra = 0 or Lab 0 for le , or even for several different
Rabcd abc _

ennuples, there is no guarantee that VN is a CN since the theorem

requires that this must hold for every orthogonal ennuple. The

Schouten-Eisenhart criteria can easily determine whether VN is not
-% 'a

-.



a C by a single choice of ennuple, but in practice they are
N

inadequate to determine whether VN is a CN

On the other hand, the Ricci-Finzi criterion proceeds by

attempting to solve the system of partial differential equations

(4.14) and (4.15) for the lea) Upon converting these to N-

coefficients (in the notation used by LANDAL/LIFSHITZ[19751)

(4.23) N ; ~ -abc abc acb ' -

where .-

(4.24) abc = ('\abc + bca - b)/2 •

one can employ partial derivatives, and avoid computing Christoffel

symbols of VN . Equations (4.14) and (4.15) are equivalent to

.,

( 4.2 5) ,xa c = 0 , .- -- '.

(4.26) \bba =c (NS)
ba cca

for distinct values of a, b, c = 1, 2, ..., N . If a solution of

these equations can be found, then VN is a CN. Moreover, the

Ricci-Finzi criterion then produces the "nicest" ennuple (ea} ,

i.e., one which is directly tied to the geometry of VN , and when
.% W, % ,o

VN  is a C a solution of these equations is guaranteed. %

'5. NORMAL, GEODESIC, AND CANONICAL CONGRUENCES.

Definition 5.1. A congruence of curves I in V3  is normal it the

unit tangent vectors to the curves of the congruence are the unit .

normals of a family of surfaces.
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(5.1),"

Hence, if . are the components of the unit tangent vectors of "ol n c

a normal congruence of curves, then here exists a function %

* V3 - h such that

-~(5.1) *1 =b la. p.

In other words, the unit tangent vectors of a normal congruence

are proportional to a gradient.

Suppose that {ea} is an orthogonal ennuple in V3 . The o.dition

conditions for the congruence I defined by e to be normal area a

well-known to be -.

(5.2) 0abc - 'acb

where b € c and b, c a .See EISENHART[1949], p. 115.'

-, Definition 5.2. A 9_edesic congruence of curves in V3  is one such-''i

i:that each of the curves of the congruence is a geodsic. That is, if -.p-..

" " i are the components of the unit tangent vectors of a geodesic.-,-

r., ~congruence, then "[-

",(5.3) i. /. & -0 .:.-

.. ~If {e I is an orthogonal ennuple in V3 , then the conditions "'

"that e defines a geodesic congruence I are .

(5.4) baa = 0 , (NS) .' "

.1 -.p..5
"4 %". ",4 ;4

• ; .0 , : , " ,'> " -. < " " .." ..' ..' ..' ..' ..' . ..' . ,. -.. ',. '.. '. .,'., '., .. '., -.. .,. .-, x .' ..' .-' .-' ..' . .,- .. .'.. ... ... ,.- ,..' ,, ,.. ... , ...- ,,, .., ... ., .,;C<., ,;,



whe re b =1, 2, 3 See EISEHART[ 1949), p. 100. For e to

define a congruence of curves that is simultaneously normal and

geodesic it is necessary and sufficient that%

1 5.5) eai eaj

See EISE'JHART[1949), p. 117.

Suppose that defines a congruence of curves denoted by

2)I We will construct two new congruences 11 and I2 with unit

tangent vectors .\ and fp , respectively, using the method of .

RICCI[1918].

Let (.be the components of and define

(5.6) X- -5.

Consider the system of equations X

0
(5.7)j '

(X. -. )(i +iij. 0 '

where w and p are scalars and are the components of a

vector. The equations (5.7) have the determinant

I1n the following discussion it is convenient to number the
congruences in a manner which corresponds to our labellinq of the
ennuple vectors lea I

U 69
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912 2 13 "g13

12 - g 1 2  X, J22 23 - 'g 2 3  C2

(5.8) - 0
13 - ('g13 3 ' 923 33 - "'g33  *3 ' .,:

- ~.'.P "1 2 3,. °.

which yields a second-degree polynomial in w The roots of this

polynomial are real and when they are inserted into (5.7) determine

two real congruences of curves 1! and 2 having unit tangent %

vectors , and , respectively. If the roots are unique, then .\

and f) are uniquely determined. Regardless of whether \ and p -"

are unique, they are said to be canonical with respect to , and

I and I2 are said to be canonical with respect to I An

example of the calculation of canonical congruences is given in the

appendix.

We now determine conditions on the rotation coefficients of an

orthogonal ennuple {ea} when the vectors of th' subset eb}

rb a) are cannical with respect to e From 3.3 it is easy

to see that

f5 .9 ) e a l q j ,u

Applying the definit-cn )t t ta '-1

• 2 'abd a-lh 1 - h "h.' .'my. 'al' .i>

".. . 2 " 2 1" ', ,', . " ' " . . . .. . - "~ ".~ - .- " .-* " ".' . •.. , .<':,-", .- '.'.- .'. .- '. . . . .. < '- -. ,". . V ." " "'"" "" " """ " "''.'<. '- "."- - -,' ;
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where "b is the root of (5.8) corresponding to eb and 11b is the
j

scalar from (5.7) corresponding to eb Multiplying (5.10) by e-

with c X a b and contracting on j we have

'abc + 'acb = 0

for b x c and a x b c Equation (5.10) also implies

(5.121 'abb ' INS)

and

(5.13) 2 'baa (NS)

where a x b

In the following we will need to know conditions on the rotation

coefficients of the orthogonal ennuple {e I when e defines a

normal congruence and the vectors of the subset {e a Ib ; a) are

canonical with respect to e Combining f%.2) and (5.11) we have, .*

in this case, '

! ~ ~~(5.14) 'b
.rS

b ; c and a e b c Rod: J- s f- ula 1ONNELL1931l p. 216

and (5.14) imply that tho e s a are principal
, 5', ,, ,ON-LA,.1

directions on the surfaces r : . , . , , e a) ate

thep .cr e.
•the principal curvatures • !,'Li"': Y. " 'V / a' an.

A.



VIVA

- ib(b x a) are the components of the curvature vector of ea  in

the subset "eb1 (b x a) .

We now have the machinery to give our promised proof of Theorem

3)
1.2 of Chapter III, the generalized Dupin theorem .

we prove only sufficiency since the necessity was proved in

Chapter III. Choose two of the families of surfaces and call them

and >2 Let i be the components of the unit normal to

21 f and denote by I the congruence of curves defined by We

3

employ Ricci's method to construct two congruences Vl and F2 with

unit tangent vectors . and p , respectively, that are canonical

with respect to I Since and p are principal directions on

and ' and i intersect in a line of curvature, then either

or is a principal direction on 2 Without loss of

generality we may choose it to be .\ Since and are
1 an 2 ar

-rthocgonal, must lie in the tangent plane to 2 and since ,

is peipendicula: to it is a principal direction on >2

.o t eover, ,1s pfpeniiculat to both .\ and F , and hence must be

the unit normal to But since F and :. are principal

riitections on I, they are canonical with respect to f, and by

o-nst :u -t icn in1 atr can-,oical with respect to { If we

%-,

A version t th 'I wini mat(or i] will appear in Tensor, N.S. See
MOODRE 7UN)1986].

%%
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label our ennuple {e } in the order {Np, } , we may express this In

in terms of rotation coefficients as

.A
(5.15) 3ab 0

where a f b and a, b € 3 , and

(5.16) 02ab 0 ,-. .

I

where a b and a, b 2 But by the skew-symmetry of the

rotation coefficients in the first two indices, (5.15) and (5.16)

imply that p

(5.17) abc =0

for distinct values of a, b, c . However, (5.17) are necessary and

sufficient for conditions that all the congruences of curves .

associated with the ennuple are normal. Thus F1  is a normal

congruence. Hence, there exist a third family of surfaces 3

orthogonal to both "i and "2 " This completes the proof. ,

Finally, we examine now canonical and normal congruences behave

under conformal maps.

Theorem 5.1. If V and V3  are conformally related and (N,p,[}

is an orthogonal ennuple in V3  with \ and p cancnical with

respect to , then the conformal image of this ennuple in V3  is
3I

']efined by

734
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(5.18) f). e e(.p
e

and N are canonical with respect to

Proof. Let - ~and - ~be the rotation coefficients ofabc abc

the respective ennuples in V 3  and V 3 * From (3.12) we have that

(5.9)abc abc

for distinct val,,;s of a, b, c . Since X and p are canonical

with respect to we have

(5.20) 312 + 321.

and (5.19) implies that

(5.21) ~312 321=.

Thus X and p are canonical with respect to .

Theorem 5.2. Let V 3  and v 3  be conformally related. If V3is a

normal congruence of curves in V3  with unit tangent vectors ,-

then the conformal image F3 is a normal congruence of curves in V33 3
with unit normal where is defined by

7t4
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(5.22) e e

,-%. _.. ...

Proof. Use Ricci's method to construct congLuences 1 and V
1 2 :\

with unit tangent vectors ,\ and p , respectively, which are

canonical with respect to V3 . Then we know that

(5.22) '312 = 321 =0,
,. --

and from (3.12) we have that iabc e %abc for a, b, c distinct.

Thus

(5.23) 0312 321 =0

and [ is the unit tangent vector of a normal congruence 13 in

V
3

i6. A ROTATION COEFFICIENT FORMULATION OF THE CAYLEY-DARBOUX
EQUATION

Let ~ define a normal congruence of curves in V3 . If x

and p are canonical with respect to then

.(6.1) 312 =  321 = .-

where -abc are the rotation coefficients of (H~ The

condition that all the congruences of an ennuple be normal is

(6.2) abc 0

75
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for distinct values of a, b, c The skew-symmetry of the rotation

coefficients in the first two indices means (6.2) will hold when

(6.1) holds and that

% (6.3) 123 :  0

Since [ defines a normal congruence, there exist 4) V -,
3 '

such that

(6.4) 0i =

If (6.1) is given, then (6.3) implies that there exist 'P , r

-' : V 3 -. D such that
.r.

'p., = /A.,\. .

(6.5) 1 10. pi  ,' -

Thus {0,*,O} is a triply orthogonal system of coordinates in V 3  '

Hence, when (6.1) is given, (6.3) is equivalent to the Cayley- -

Darboux equation of Chapter III, 3. /

* " .-

'4.

7. HOTINE' S CONJECTURE

As stated in the introduction to this Chapter, Martin Hotine " a

conjectured and claimed to prove that any function 0 E E3 -+ P wi th .,.

Snon-vanishing gradient could be a member of a triply orthogonal

coordinate system. We quote from HOTINE[1966b], pp. 196-198, with ,'"e

minor changes to agree with the notation and numbering of this4--.4

.6 -Pt
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"In HOTINE[1966a], it was shown that the gradient equation of a

0scalar * ,

(7.- .,"

(fi a unit vector), can be transformed conformally with scale factor

[= e I] to a Riemannian space in which the become tangents to a

family of geodesics and the O-surfaces, that is the surfaces over

which 0 is constant, become geodesic parallels. It followed that 0

the metric of the curved Riemannian space (denoted by hats) can be ., % .

written in the geodesic form,

(7.2) ds -a dd +d@ 2  (a,1 31,2 )

(EISENHART[1949], p. 57; WEATHERBURN[1938], p.81). Using the same

coordinates (x ,0) the metric of the untransformed space can

accordingly be written as

2 a2a
(7.3) ds a & dxf + e-d@2 (o = 1,2) *-.. -.

"The components of a(43} can of course contain * , but for

different constant values of . will also be the surface metrics of I-A -..1

the O-surfaces. If ela is the determinant of the metric of the .-.

O-surface passing through a point, then it is clear from (7.3) that

the determinant of the three-dimensional metric at that point is

(7.4) e Ia . .. ,.-- -

Consequently the associated tensor in three-dimensions is 4

77 ~\~~d
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rs (a'{ 2(y
(7.5) g e ) (rs = 1,2,3) '- *.E.

in which a is the associated tensor of the surface. This can .X.-

easily be verified by writing out the metric tensor in full.

"Now any curvilinear coordinate system in three-dimensions

implies the existence of three scalars, or coordinates, whose

gradient vectors are not coplanar. A coordinate line may be defined

as a line along which only one of the scalars varies, the other two

being constant. Each coordinate line must accordingly be % 

perpendicular to the gradient vectors of the other two coordinates.

The xl-coordinate line is perpendicular to the gradient of * -

which from (7.1) is in the direction r normal to the O-surface,

so that the x -coordinate line (and similarly, the x -coordinate

line) must lie in the O-surface, and (xl 2  can therefore be

considered as surface as well as space coordinates.

It is apparent from the absence of (a,3) components in the

metric (7.3) that the 0-coordinate line is perpendicular to both the

x - and x2 coordinate lines, so that is the direction of both
r %

the O-coordinate line and the gradient of 0 • Consequently the

gradient vector of x considered as a scalar must lie in the

surface, because it must be perpendicular to both the x2  and

O-coordinate lines. The gradient vector of x2  must similarly lie

1%in the surface. We cannot yet say however that the x - and %
2_'a2 :,.'-\

x -coordinate lines are orthogonal or that coordinates can be found e

which would make them orthogonal within the framework of the space

metric (7.3). ... 1

*
7RA
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"we assume nevertheless that the coordinates (x 2) in the S

metric (7.3) are definable as scalar functions of position throughout

i *.?_,

some region of flat space, in other words that they can be expressed

as some function of Cartesian coordinates (xyz) independently of

the definition of N , in accordance with the usual meaning of

coordinates in a Riemannian flat space. In that case we can write

CPr = (x)r

r,[r",,

~5%
where p is the unit vector in the direction of the gradient of x ..'"'

r- % %

and C is the modulus of the gradient. Evaluating C in the metric

(7.3) gives -.-.-

2 r : l(x l) = gl = 11C g grscp)(Cp g( x) 'r*0

and finally

(7.6) (xl) V J %pr a r

But p is the unit normal to the x1 surface passing through the,-

point under consideration, that is the surface over which x ,

considered simply as a scalar, is constant. Equation (7.6) is %-v

accordingly in all respects similar to (7.1). By making a conformal r.F.

* transformation to another curved space with conformal factor a11

the pr will transform to geodesics, and exactly as in (2) we can '.

write the metric of this second curved space in the geodesic form

ds = a dx dx + (dx

79
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Transforming back to the original flat space, we have

(7.7) ds2  a dxdx + -- (dx

a a

as the metric of the flat space. We do not yet know what the other

two coordinates dx may be in this metric. The two metrics (7.3)

and (7.7) are however alternative ways of expressing the same space

and one must transform into the other.

"Since x1  is a scalar function of position in space, it gives

rise to a family of surfaces whose metric can be expressed in the .fJ

following forms putting dx 0 in (7.3) and (7.7)

ds2 = 22 -2d2

2 2a dx + e do

or %

2 - , -.,

a
a %m

These two invariant forms of the line element at a point of the

surface hold not only over one particular surface but also over the

whole family, so that the coordinates x are either the same as

2 2
(x 0) or can be transformed to (x ,4) We can accordingly

rewrite (7.7) as

2 22 1 1 2 -2od2(7.8) ds = a22 (dx2) + (dx + e ,
a
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12which is triply orthogonal in the coordinates (x ,x 2,0) Comparing p

this with (7.3) we have a12 = 0 , which must be so since the

11
coordinates are orthogonal; and a11 al whih s s snc

a 0
a12 =0.

"We get the same result by considering the gradient of the other

coordinate x

"In aiming at this result, we have merely assumed that the I

1 2coordinates (x ,x ) in the metric (3) are scalar functions of

position, without otherwise restricting them or the form of 0 .

Classical doctrine on the subject asserts nevertheless that 0 must P

satisfy a third-order partial differential equation known to

Eisenhart and others as the (Cayley)-Darboux equation. If the above .

reasoning is correct, then the (Cayley)-Darboux equation, which is I

shown below to be equivalent to one of the six conditions of flat

space, must be an identity, in which case it expresses a relation

between p and the form of the O-surfaces. In the main geodetic

application, this would be a hitherto unsuspected relation between

gravity and the form of the equipotential surfaces. It is

accordingly of considerable importance to resolve this question one I

way or the other.

"The remainder of this paper assumes the existence of a triply

orthogonal system derived from a scalar 4 , and on that assumption 0

works out its properties, including several which do not seem to have

been formulated before, at any rate in the compact form now given. $."

If the classical view is correct, these results are valid if 4)

81
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satisfies the (Cayley)-Darboux equation."

In the next section we will analyze Hotine's conjecture

employing the rotation coefficients formalism introduced in 6.

§8. CONFORMAL MAPPING AND THE CAYLEY-DARBOUX EQUATION

Antonio Marussi was aware of the weaknesses of Hotine's argument

and makes the following comment in MARUSSI[1985], 4 ) p. 133. We quote

it using our notation.

"We now establish an extremely important fact. The change in

curvature e depends only on the position and on the direction of

the normal to the surface, and not on the direction of the section on

it. Since it is the same for all these directions, it follows

therefore that the directions of principal curvature are conserved in

the representation. Thus, if a family of surfaces is not of Lane's
.5-

type in V3 , i.e., it does not belong to a triply-orthogonal system,

then neither can it transform in V3  Since the family of

equipotential surfaces of the Earth's gravity field is not of Lame .'Sr

type (for it to be so, (Cayley)-Darboux's third order partial

differential equation would need to be satisfied), then neither can

be any of its transforms in a conformal representation; there is thus .. [,

no possibility of reducing the study of the Earth's potential field

into a triply orthogonal coordinate system."

We will state the above argument in more precise mathematical

.4.4

-oh

" . ~4This article was originally published in 1967..- .
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form and prove it.

P,
Theorem 8.1. Let V3  and V3  be conformally related. Let I

denote a congruence of curves in V3  If I is not a normal

congruence, then its conformal image I in V3  cannot be a normal .,.

congruence.

Proof. The theorem follows by using Ricci's method to find two

congruences canonical with respect to I and by using equation ,.'.v.
(3.12) and the rotation coefficient criteria in S5 for a congruence

to be a normal congruence. See the proof of Theorem 5.2.

Theorem 8.1 and our derivation of the Cayley-Darboux equation in

Chapter III, i2 show that Hotine's conjecture is false. In §11, we

will further critically analyze Hotine's argument.

S9. CONDITIONS FOR THE CONFORMAL IMAGE OF A NORMAL CONGRUENCE TO BE "
A GEODESIC NORMAL CONGRUENCE

In this section we examine conditions on the conformal function

o that determine whether the conformal image of a family of surfaces

in V3  can be a system of geodesic parallels in V3  (A system of

geodesic parallels is a family of surfaces such that the unit normals

to the surfaces define a geodesic normal congruence of curves.)

S_ '- .%

Theorem 9.1. Let V3 and V3 be conformally related and let (7 be

33the conformal function. If : V3 -. [P is a smooth function and we

. . ..

8 3 . "..

. ¢ " ",, "¢ 
" 
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define a vector field by

(9.1) = 4(""

with > 0 , then defines a normal congruence of curves, viz.

the curves normal to the family of surfaces p = constant. If N.

and p are canonical with respect to , then the necessary and

sufficient conditions that the conformal image of , , defines a

system of geodesic parallels are given by

(9.2) .0.

'pI -'p(7,' = 0, ''
4"T A/1 0

w h r pi i  i .4i fa n d : C iPwhere ~P: pA , p :=~ i, , = i.A and -,, :(),

Proof. From (9.1) we have

(9.3) j Ej i + i '.
i'j J 1 j

but is symmetric in i and j so

(9.4) 'P(fi jP ,iI.. .

Multiplication by J and contraction on j yields

(9.5) 0 1 -/

where '



The conformal image of , is defined by

(9.6) = e( ?.

and a straightforward computation shows that

(9.7) +

Combining (9.7) and (9.5) gives

(9.8) .i; j'  = 1Pi - /i- (i - /)
A. / i 'Pi i /A

If we write a. and i in terms of our ennuple, viz ai .iN/ +

0  
+ G and i= i/ + f)ip +  IE ' then (9.8) becomesP AiA

(9.10) ; (/ - + GP- '"/P)Pi

If the equations (9.2) hold, then

(9.11) i ]  = 0

and defines a geodesic normal congruence. If, on the other hand,
S.

i. & = 0 , then by the linear independence of ,\ and p equations
;-

(9.2) must hold. The proof is complete.

Corollary 9.2. Theorem 9.1 remains true even if \ and fp are not

canonical with respect to .

85
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NB: in this corollary { \,;,) must be orthogonal. :

Corollary 9.3. If r e , then equations (9.2) are satisfied.

Theorem 9.4. The differential system given by (9.2) is completely

integrable.

Proof. Suppose we choose *= eT Then (9.2) becomes

(T. (7i ,\ = ,

( 9 .1 2 ) ' "1" "
(T - )' = 0

and if f= T - , then we have "

= 0

(9.13)

Let {,N,,} = {e I a = 1, 2, 3 Equations '9.13, mny .

expressed in the form

i
(9.14) f e a f

where a = 1, 2 These eqpa - i:w

only if

(9.e

where a, h . . ..
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(9.16) f/a/b f /b/a c ( -I cab - cba ) /c '

but since f/c =0 when c = 1, 2 we have

(9.17) f/a/b - f/b/a (-3ab- 3ba )f/3'

and the normality of the congruence defined by f = e3 then requires

(9.18) f/a/b /b/a vu 0

This completes the proof. Z

§10. CONFORMAL MAPPING OF A V2

In this section we consider conformally related two-dimensional

spaces. We do this because much of geodesy is two-dimensional, and

also to correct a formula in MARUSSI(1985].

Let V2  be a two-dimensional Riemannian space with metric

tensor a a , Christoffel symbols V 1 , curvature tensor R 00-16

Ricci tensor R, scalar curvature R and Gaussian curvature K %

Greek indices will, of course, range from 1 to 2. *

Let V2  and V2 be conformally related with conformal function

Then the metric tensor of V2  is given by

(10.1) a :=e a

the Christoffel symbols are

(10.2) r(f3 :=of + (Iy + ' C a(Toa 0 6
N

87



and the curvature tensor is defined by -

2ou

(10.3) R e (R 3  + a 3 + a y -a a

-a 06 a + (a ,ba_ -a a -a 6)al)

where a :- OX C-a a 0 The Ricci tensor is given by

(10.4) R := b R + a A2,

and the scalar curvature is

-2(7 .

(10.5) R := e (R + A2u) .

* d.~

Since any V2  is an Einstein space we have that the Gaussian

curvature of V2  is

-2o %. N"

(10.6) K = e (K - A2o)

Suppose that , defines a congruence of curves f in V

If X are the components of N , then p is given by

(10.7) f)

defines a congruence V2 perpendicular to U1 , where t is the

contravariant Levi-Civita dualizor. See McCONNELL[1931], p. 167. !

The vectors \ and f7 satisfy the Frenet equations

McCONNELL(19311, p. 185

".4'.
-, <.,.8.
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(10.8) OX f3-

where K is the geodesic curvature of F. We also have a similar

pair of equations:

Pa,j3 g -

(10.9)*
N P K Pa % - .. -

where K is the geodesic curvature of the congruence T'2 We %
g

wish to exhibit similar formulas for the conformal images of F and

F in V2 22

The conformal image of N is defined by

e

(10.10) = 
%0

and the conformal image of pis given by

(10.11) ap =e a

By a straightforward computation we see that the analogous formulas

to (10.8) are 
.. ~

X OW N p 0e~ (K +0 o / ,P
(10.12) (%

where (/ :=(7 Thus the geodesic curvature of V1 is given by

89



(10.13) Kg e (g /p

Similarly, we have formulas analogous to (10.9),

Pa(O P = e' 0, +a )X
Pn =-e( g /\ a' . .

(10.14)
X (1;f3 = e- (9 + a )Paag a%

Hence we have that the geodesic curvature of r is given by %
2

Kg e ( K g + 0

where o :=o

Equation (10.13) is the correction to equation (4) of

MARUSSI[1985] on page 150.

411. CRITIQUE OF HOTINE'S ARGUMENT 4,

In this section we critically examine Hotine's argument for his

conjecture that was quoted in S7. ,.

In the un-numbered equation immediately prior to his (7.6)

Hotine has an identity of the form I -

(1i.1) 1 (x ,x)) = gi)

where the (x is a coordinate system on V3  (or E3) and gij

are the contravariant components of the metric tensor in this

coordinate system. However, (11.1) is not a general tensor
I

expression, but merely an algebraic identity that holds only at a

point. To see this observe that the left-hand side of (11.1) are .%

90
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scalars and the right-hand side are the components of a tensor. In

order to obtain the line element (7.7), Hotine has defined a

conformal map of V3 - V3 by

1 1 1(11.2) = A (xl'x )gij = gij

However, the second equality in (11.2) holds only at a point and to

have a valid definition of a conformal map the conformal function

must be arbitrary. Hence (11.2) represents a non-trivial

specialization of the conformal function o in

(11.3) gij e e2c •i

Furthermore, we have

(11.4) gl] = 0

where " denotes covariant derivative with respect to the

Christoffel symbols of gij , and thus (11.4) shows that the gij

defined by (11.2) have the same Christoffel symbols as gij %% '  -

The remainder of Hotine's argument is entirely based on such a .

specialization of the conformal function. In the conformal geometry •

discussed in Chapter II, (1 is always an arbitrary function. Any

specialization of it generally makes it constant or forces VN or . %bP

VN to be flat. Indeed the only known N 3 specialization of •

is the concircular mapping defined by
(11.5 r. J.- = cg.

.

,j i j ' ij '

91
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but this is achieved only by the introduction of a new arbitrary

function .

Hotine may have been misled by two examples in McCONNELL[1931],

which is one of his major references. The first of these examples is

#4, p. 197, which states:

If we choose space coordinates to be orthogonal and such

that x3 - 0 is the given surface and choose the u-curves on
the surface to be the intersections of the surface with the
x - and x - surfaces, then we have the following relations
for all points on the surface

r a r r r Ox r r
x := x:= 1 f2 2

(ii) a4  gp,0' ga3 = 0; a 
1I  g_ , ga3. 0, g33 . 1

g33

VA(iii) {r = (001.. )

(0,0,-)

.

The only thing explicit in McConnell's statement is that the xr *'.

are orthogonal curvilinear (not Cartesian) coordinates for E3 . A

similar ambiguity occurs in EISENHART[1947], p. 159.

Presumably (1) is a formal specialization of

r
(11.6) Ix r

which is a familiar result, e.g., EISENHART[ 1949], p. 2, that occurs

in the classical treatment of tensor transformation laws. However,

I -",

9"?w.4"
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(11.6) is valid only at a point -- a fact not stressed by

McCONNELL[ 1931] but which is always implicit in the tensor

transformation laws.

If we consider (i) as a system of differential equations we have

1 1 1
x =U

2 2 2(11.7) x =u + C3 3-

X = C 3

where c, c2  and c3  are constants. Thus if the differential

equations hold at all points of the surface, then the surface would

be flat. This is easy to see if one examines the Lame equations in V. U "

Chapter 11, §3 and the usual formula for Gaussian curvature when the *.~ % %

surface metric is orthogonal, viz.

K - 1 +( _ _ _ 1- - 'Ka 2211)11 + (--L a 112)..

It can be arranged that (i) and hence (ii) and (iii) hold at a point

of the surface. Hence this example is incorrectly stated -- the . %
r.

quoted results are valid only at a point, not on a surface. .--.>

McConnell's second example is #1, page 188, which is similar to

equation (11.1) and states that

(11.8) A au",u') -

where a are the contravariant components of the surface metric

and u are coordinates on the surface. The second example

essentially involves the first since by definition
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(11.9) A (Uf ,u" ) a 6 a 13 a

du' Ou

Presumably McConnell's second example was suggested by the

discussion of BIANCHI[19101, pp. 67-69, which is correct. Since this

discussion is very instructive we will briefly outline it. Bianchi

seeks to construct a non-singular change of variable

--o v , ~ 2 )

(11.10) if --. U = V (u1 u

which reduces the first fundamental form ds = a(T3 du'duP on a

surface V2 , to a 0dvadv3  having

(11.11) 11 = a22 ' a12  0

Then by (11.10), the correct statement of (11.8) is

(11.12) A1 (vv') = " ia

This follows by the definition of A1  (see Chapter I §3..

(11.13) a 'Iv f )  0 a-a O-- = a 0 - ,

which is the classical tensor transformation law. However, (11.13)

holds not only at a point but in a coordinate chart of the point.

1 2Writing 1 v. and , : 2  (11.12) becomes

114-11 -12 -22
(11.14) A , A ( ,) = a , AI, a

But since
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-I . ) .,N

9 9 **S % *% * * ~ ~ * ~ ~ >~? ~ ~ ~E' ~ *~ . •. .w . )



2 1 1 1 12 ,rj(11.15) (A f)(Aln) -A1 (fo) :a I 2
( ,( , ,o '= --a 1 2 %

a C(u ,u2 ) '

where a :- Ia[I , a Jai1 , it follows that

(11.16) al1 iAif' a1 2 = - AI( f n), a 2 2 
-aArj*

Hence the condition, a1 2 
= 0 that the new coordinate lines

= constant, rl = constant on V2  be orthogonal is that

(11.17) Al(Ur) = 0 ,
1I

while a11 =a 22  requires that .)- .-J.

(11.18) 1 =

Explicitly expanding these expressions, and solving for the partial

derivatives n , gives

a122 - all.1

( .19) {- a 2
2 - -.

vr-aI

The integrability conditions of these equations require that be a • ..-

(real) solution of e A: -

(11.20) = 0
2 V..

similar procedure for the partial derivatives # gives
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= allU 2 - a12U1
v-

(11.21)
a12,l1 - a2 2r11

2

So that q must be a (real) solution of

(11.22) A2,1 = 0

The systems (11.19) and (11.21) are called Beltrami systems and they

are the Cauchy-Riemann equations on the curved surface V2 .

Likewise (11.20) and (11.22) are Laplace's equations on V2 . ..€.

Thus the required reduction of a d dl to

2 2
N( ,,]) (d 2 + dl2  is equivalent to determining solutions of a pair

of Beltrami systems. This problem is now other than the construction

of an isothermal coordinate system on V2 ,0 and in effect explains ,-.".

our comment on page 26 that any V is conformal to any other V2  .

There are an infinite number of systems of isothermal coordinates, -
each system corresponding to an analytic function of the complex

1 2variable u + iu . More precisely stated, if the coordinate lines > N

1 2u constant, u = constant then all other isothermal systems are

given by the equations .

1 2Re{f(u + iu2)} = constant,

(11.23) . -

Im~f(u"  + iu2)l = constant,

1 .2
where f is an analytic function of u + iu Thus corresponding

to each isothermal system there is a conformal mapping -N'.

P Id,
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V2  V2 = E2

All of Bianchi's work is two-dimensional; however, Hotine's ... r

argument requires a more complicated construction in three ..

dimensions, and his proof involves a serious omission. In effect he

soecializes the conformal function

(11.24) 2= A 1 e%

to obtain the line element (7.3). This is employed to map the system

of surfaces * = constant into a system of geodesic parallel%

surfaces. Since the function 0 is not truly arbitrary, it remains %

to be shown that such a specialization is valid. In order to, %

complete Hotine's argument, it would be necessary to prove that his

specialization was admissible. In view of the previously indicated

error there seems little reason to attempt such a proof. Moreover, %_

it seems highly unlikely that such a proof could be done since the

requirement that a map a system of geodesically parallel surfaces
A

into a system of geodescially parallel surfaces forces o to reduce

to a constant, i.e., a homothety. Moreover, Bianchi's reduction of

0d- -"__d to isothermal form was possible only by the existence of

harmonic conjugate functions, and is a direct consequence of the

plentiful supply of analytic functions of a complex variable. In

Hotine's case he requires a more complicated specialization of

gijdxidxJ to the form (7.3). However, in three dimensions the-P

situation is significantly different. The three-dimensional analogue % .0

of the Beltrami systems (see IIEDRICK-INGOLD(1925]) does not reduce to
0

Cauchy-Riemann-like systems and the supply of analytic functions--

97 ~J
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hence conformal maps -- is quite limited. This, of course, was S

predicted by the Liouville Theorem in Chapter III, i3. For this

reason it seems unlikely that Hotine's argument could be completed.

Finally we can also consider Hotine's conjecture strictly from
, .. . ~

the viewpoint of partial differential equations. let : V3 -+ JR be

a given function with non-vanishing gradient. From partial "-. ...

differential equations we know that the system •

g 0.j %

(11.25)
g 3if : 4.gf = 0 -'g

has solutions ri,: V3 -R . If in addition we require that

(11.26) g = A 1( ) = 0

that is, {,q,(] define a triply orthogonal system, then the system • -'

of partial differential equations given by (11.25) and (11.26) is .

over- determined and need not have a solution. Another equation on

f is needed to ensure a solution and this new equation is precisely

the Cayley-Darboux equation of Chapter III. In fact, the

Cayley-Darboux equation is derived from a system of partial

differential equations analogous to (11.25) and (11.26). -

It is now easy to see the connection between the generalized

Dupin theorem and the Cayley-Darboux equation. If we have a system

of surfaces defined by = constant, then, it is always possible to

find another system orthogonal to it. However, the generalized Dupin

theorem states that the existence of a third system orthogonal to ..
-.7. %%.
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both of the others requires the original two systems to intersect in

lines of cur-vature. Therefore, we may testate the Cayley-Darboux 05

theorem in the following manner. %

If . : V3 - P defines a system of surfaces, then in order for ,:

there to exist another system of surfaces orthogonal to that defined

by f and such that the two systems intersect in lines of curvature,

must satisfy the Cayley-Darboux equation.

In conclusion we have indicated three major reasons why Hotine's S

argument is seriously flawed:

(i) it involves a choice of coordinates, and simplification of

original metric which is valid only at a point; •

(ii) it employs a specialization of the conformal mapping -

function, but does not establish the admissibility of this

specialization;

(iii) it does not verify that the geoidal surface given by

0 = constant satisfies the Cayley-Darboux equation.

Any one of these reasons would be non-trivial to rectify, and taken

together we feel they show that Hotine's argument is fatally flawed.
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Appendix - EXAMPLE OF THE CALCULATION OF CANONICAL CONGRUENCES

Let V =R 3 = E and set
3 3

(A)f~ 1 ~2 ,3 1 2 2 2
(A.1) f(x x2 , x 3 ) = (x ) + (x

and for the purpose of convenience, rewrite (A.1) as f xl2 + x2
2

Then

(A.2) vf = 2(xlx 2 ,0)

hence the unit normal to the surfaces f = constant is

(A.3) vf

and (5.8) becomes

2
x2  1 x

2f3/2 Tf 2312 2f1/2

2 1.2 ; X21 xl x2

13/2 -12 ,3 ,2  1,2
(A4) 2f f = 0.

0 0 0 I

2f 2fl 2 0"0

Evaluation of this determinant yel.ris t.

(A.5) 1
4 f1 2 =.0

which implies that

105o° . -
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% %- %

1 -1/2 0
(A. 6) =0 or f

Using the second equation of 5.7) the vector corresponding tu

1 = 0 is given by

(A .7) X..A 1\ = 0 .

I

2 x 1 x 2 0 1

1 0 1
12 1

3 0 0 0 3 j

1 1/2-''-and the vector corresponding to to 2 1f1/
1 2

(A.8) X. ] 2 / -.

or

x22  x 2 0 .-1

Al lA A "S -.3,2 2  21 2 1f /22 f]/  - Xl x 02f

If we make the change of variables

(A.9) x 1  cosOl x2  sinO) x 3 x ...

we obtain

(A.10) ' 0,0,1)

%
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(A.11) p = (- sint),cosO,O) ,

and

(A.12) = (coso,sinO,O)

which are the well-known basis vectors for cylindrical coordinates.
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SUPPLEMENT (by J.D. ZUND)

S1. Introduction
. ,

The work in Dr. Moore's dissertation strongly suggests that Hotine's

conjecture is highly implausible. It shows that crucial steps in his

arguments are fatally flawed, but it does not prove that the conjecture is

false. Without using Hotine's equations we cannot obtain his results, and we

were unable to derive his equations by other means. Our goal was then to find

a decisive part of his argument which was wrong. We succeeded in doing this

about a week after the dissertation was submitted to the examining conunittee

and the Graduate School of New Mexico State University. In this supplement I

will describe this conclusive error in more detail than was possible in our .

joint paper "Hotine's Conjecture and Differential Geodesy," which will be .,

published in Bulletin Codesique. .

As mentioned in our introduction to this research report, the major

oversight on Hotine's part was his failure to employ the formalism of Ricci %

rotation coefficients. In Section i2 we will translate Hotine's Cayley- -'-

Darboux equation into the language of rotation coefficients. In Section 13 it

will be shown that his Cayley-Darboux equation is not equivalent to the true

Cayley-Darboux equation and moreover neither of these equations is an
•

identity. Finally, in Section 4 we will discuss the physical ramifications

of this result and why MARUSSI [19851 (page 133) was correct in his 1967

statement that "there is no possibility of reducing the study of the earth's

potential field onto a triply-orthogonal system."
%

2. Hotine's Calley-Darboux Equation

In this section we will teformu>-i .. t:ri's Cay1,y-Darboux equation in

tne language of rotation ronfficrin-, Ef , 'inini this,a f-., genetal %

-omments on notation are required. Ft;t, -ut paper "Hotine's Coniecture and

... 9
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Differential Geodesy" for Bulletin Geodesique was essentially written in

Hotine's notation which differs slightly from that employed in Dr. Moore's

dissertation. The main differences are that Hotine did not employ a comnma to

denote covariant derivatives, and we indicate partial derivatives by a stroke S.

2"l". Moreover, Hotine's conformal function m appears in the dissertation .

as e , and the triad [,\ r in our paper is denoted in the dissertation by

le . Since this supplement is intended to be read in conjunction with ourIa
paper, it will be written in Hotine's notation. Additional differences in

%

notation will be noted where necessary.

Second, references to equations appearing in the dissertation will

include a page citation. References to our Bulletin Geodesique paper are to
.. *% %

0. equations appearing in its appendix and will include the prefix "A" in the

equation number. All numbered equations in this supplement will include the .

prefix "S" in the equation number. Finally, references in the supplement will

always refer to those listed in the bibliography of the dissertation.

In HOTINE [1966b] (page 202), and in HOTINE [1969] (page 114), Hotine

announced two forms of the Cayley-Darboux equation: a %to f-,. c(li, i ,or )

(S~S.

(S.1) 1 s  0 (o, l = 1, 2)n 4~~

and a .'Ikifr (ptii r ii

(S.2) 1 rs (r,

(-) A H = 0 s ,1,'2,•3n rs

0 r .
In both these equations the vectors A , and ,\, respectively are

ptincipal directions. The factor n appears in the basic gradient equation:

(S.3) N =nr,
r r

and in this equation N is to be identified with the geopotential of the

I lo .
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rotating Earth; each N-surface N(x x,x = constant is an equipotential

surface; and ,r is the unit normal to the N-surfaces. Hence physically n %

corresponds to the magnitude of the gravitational acceleration. In the ^.o e

dissertation, (S.3) is written with N, n, ,r replaced by , ' (see

(7.1) page 75). 
6 .

h%

Strictly speaking, Hotine's derivation of both (S.1) and (S.2) are rather Js '

dubious. In HOTINE [1969] (pages 113-114) few details are given and we S

suspect that the missing steps include use of equations which are valid only .

at a point (see the dissertation pages 90-91). However, the real issue is not

how he derived these equations, but the fact that he regarded them -- in S

particular (S.2) -- as the genuine Cayley-Darboux equations. ... -"

In order to translate (S.2) into rotation coefficient language, we take

r
the unit vector v to be the third vector of our triad [ a r }, with the unit 0

vectors A and being the first two vectors of the triad. These p , -
r r ,. V

vectors, or equivalently the congruences I1 and 12 having them as tangent

vectors, are assumed to be canonical with respect to , r. Hotine did not use 0

this terminology, but this important property is implicit in his construction.
.. "

This notion is fully discussed on pages 65-68 of the dissertation. The . .-

resulting triad is denoted as r and explicitly it is

-...... ?-
r, r r} f.k-. ,..'.-'.-.

We now proceed to translate (5.3) into rotation coefficients. First we

covariantly differentiate it to obtain

(S.4) Nrs =ns ni,

and similarly -.

n + ni(S.5) Nsr r s sr ,. -

But since N is a gradient, both these expressions are equal, viz
r Al

i" N N"



.%

Nrs N sr Using (S.4) and (S.5) we obtain

Nr rsr"w'-- ~

r r r sN rS =(ns r + n vrs =n / 2

r s r( rsN sr i ( r s + n i = n- 3 2 3  '

sr r esince v' is a unit vector, i.e. , ir = 1, we have i) r  = 0. Thus we I.

obtain

(S.6) n/,2 = n-, 323

where n/2 = njiS and "/" is defined as in (A.2), or in the dissertation on
r s ar s

pages 54 and 58. Repeating the same procedure for N rs S and N v r %
Es sr

yields the corresponding equation

(S.7) n =n- .313
/1 313

where n .
/1 '"'""'

s1
It is convenient now to temporarily write 'P - , so (S.2) becomes -

nS
'I, s 0 " *S. 8 ) @ r s .' ,

(S.8) % 0.

To convert this into rotation coefficients, we compute the derivatives

1r 2 "n

L= --. (nn - 2n ns) .

and substitute them into (S.8). This gives the equation -

(S.9) nn r p s -2nrns rl11s =0.

(59 r s

On the other hand, by definition

n// -(n . .

r ' r

112 "*. " *"
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d.

i.e.,

r s r s
/l/2 (nrs r s

However, we have

rs r r

Ss o (see (5.2) page 66) andJ.J

and since, by hypothesis r3  is normal, 312 321 (

canonical 1 132 = 312 0 (see (5.11) page 69), this reduces to merely

31222

Thus, we obtain -. '.

-rr

/ = n + 122n/2

i..e. , "..,

(S.10) nr n " ,
= n/l/2 - 122n/2.-,.

Now using (S.7) and differentiating, we see that

n/1/2 313 /2 + ni313/2

and by (S.6) this yields .

//2 n( 3 2 3 3 1 3 + '313/2)

Thus, combining these with (S.10) we have finally

n n +rs 323 313  313/2 323 122

If this is substituted into (S.9) we obtain

n2(-323 313 + 313/2 - 323 122 323313) = 0 -

which simplifies to

(S.ll) >313/2 -T323 313 323 122

113 .- -



and this is Hotine's Cayley-Darboux equation.

l13. The Cayley-Darboux Equation

We now establish that Hotine's Cayley-Darboux equation is not equivalent

to the true Cayley-Darboux equation, and that neither this equation, nor

(S.11), is an identity. This conclusively refutes the conjecture.

The first part is easy. In the case of a triply-orthogonal system of

surfaces, the respective surfaces pairwise interest in the normal canonical

congruences Fl, F2, [3 as described in the triad scheme of §2. Thus, when

312 = * 321 = 0 (the condition for the normal congruences 1I and F2 to be

canonical with respect to V3) , as shown in the dissertation on page 74, the
0.a-

% Cayley-Darboux equation assumes the simple form

(S.12) ~ 2 0

It is now obvious that this does not have the same structure as Hotine's ,...

equation (S.ll). .' .

Hotine claimed that his equation was an identity by virtue of the LameL --

equations (page 25) which express the flatness of Euclidean 3-space. In terms

of rotation coefficients these are expressed by the six equations "-' <

(S.13) R 0
abcd-0.

viz , '-'I'

R 0, R 0, R =0Ru
1I212 1I213 R1223. -

R 0, R 0, R2 0 ,.,.

1313 = 0 R132 3 = 0, R232 3 = 0

where

114 %,..: ,•
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R -
abcd =yabc/d -abd/

( S. 14 ) + L( 'fad fbc -' fac fbd ) ,,. z-

f
%.% ."_

+ C'abf('fcd - 'fdc )

f

By an inspection of (S.14) it is clear that only one of the Lame equations has Ww

a form similar to (S.11). This is R1323' which by skew-symmetries is R31 32 '

and

R 3132 313/2 312/3

+ Lf32 f13 f33 f12
f

. %-%

+ t31fI f32 - f23.

f
4* . ,%-

Expanding this expression using the normal and canonical condition .% ..- %
.% .' -

'312 = 321 = 0, we obtain

(S.15) 0 = 313/2 '313'323 '323'122 '123( 311 -322
)  ,.

where the underlined terms are precisely those appearing in (S.11). This

shows that Hotine's equation is merely o pitece of o lome eqiotion, and (S.11) S

does not implq thi, 123 = 0 which is the true Cayley-Darboux equation.

Moreover, (S.15) shows that 123 need not be zero, hence the Cayley-Darboux

equation is certainly not an identity!

S4. Physical Consequences -..

In l13 we showed that neither Hotine's Cayley-Darboux equation or the true S

Cayley-Darboux equation is an identity, i.e., a consequence of the Lan- , .
.,%%

equations for the flatness of E Thus, in order for E3 to admit a triply-

115
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I

orthogonal system of coordinates the true Cayley-Darboux must be imposed as an

additional condition. This is presumably the reason for the cryptic conment

of Marussi quoted at the end of the introduction to this supplement.
I

The reasons for such a conclusion are now obvious, from the complicated

nature of the Cayley-Darboux equation (recall 16 of Chapter IV, pages 73-74).

One can argue both on mathematical and physical grounds, and in fact such

reasons are not truly independent.

Suppose one considers the simple case of the Earth rotating with a

uniform angular velocity (. and having N as its geopotential function.

Then one has the Newtonian equation

(S.16) AN = -2.,& .-.

(where A is the 3-dimensional Laplacian), and if the function N is to -

define a N-surface of a triply-orthogonal system of surfaces, then it must

also satisfy the Cayley-Darboux equation

(S.17) N = 0

Equation (S.17) is a convenient way of writing the Cayley-Darboux equation (it

was not used in Chapter III, or ZUND/MOORE [1986], but it was introduced in

our Bulletin Godesique paper). In effect, t might be called the Cayley-

Darboux operator which as we know is a complicated non-linear third order non-

linear partial differential operator. A tensor expression for (S.17) was

given in ZUND/MOORE [19861, i.e.,

(S.18) N (NsN. - 2N. N )b NkN N = 0~ijk'Pmn'pqr iP s ps spsmq kn r

where ijk is the Levi-Civita permutation tensor and the subscripts on the

function N denote partial derivatives. %

116
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Mathematically for a triply-orth(- ',4v.Ivt- one is faced with solving

the combined system of equations (S.16) and (S.17). This system is rather

unspeakable, and there is no reason to suspect that these two equations are %

even consistent. Even worse are the technical questions of the existence and * 0•

uniqueness of such a combined linear and non-linear set of equations. .

Virtually nothing is known in this respect! From the underlying physical

situation, one would like to regard (S.16) as the basic equation for N with

(S.17) being some kind of geometric constraint on the function N. However,

mathematically these roles might be interchanged! Cven if all these questions

are successfully resolved and (S.17) is regarded as a geometric constraint on

the problem, there is no guarantee that it will not exclude all the

interesting solutions of (S.16). Thus, mathematically the combined system is

a horrendous problem.

Physically the situation is much simpler. It is clear that (S.16) is the .% %-

significant equation and that it is sufficient to determine the Newtonian

geopotential function N. The theory is complete and requires only ,-
0

P(lIIE~lil~lE, (S.16), and there is really no need for (S.17) in the physics of the

Earth's gravity field. Barring an unlikely physical interpretation for (S.17) 'e ,

-- which would make potential theory into a non-linear theory (a non-Newtonian

theory) -- this equation is nonsense. Its only purpose is to produce a

triply-orthogonal system of surfaces and a 'nice' coordinate system. However,

its complicated nature -- both mathematirally and physically -- since it could

exclude physically meaningful solutions of (S.16) -- suggests that such

coordinate systems need not exist. We havfe no doubt that if Hotine had known ," 4.,

that the coirrect Cayley-Darboux wa. :'t in identity, he would have not __

prcpos' .his -on]rtute. Stated i:o'-tly, S. 17) is not a physical .- ,
% '

4.?
-mi-ua :-n, and it d Joes not fit int" thf]..t i ii-u f Nowtonlan potential theory

and I t disc),11d.
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